Goto

Collaborating Authors

 Zhu, Xupeng


Hierarchical Equivariant Policy via Frame Transfer

arXiv.org Artificial Intelligence

Recent advances in hierarchical policy learning highlight the advantages of decomposing systems into high-level and low-level agents, enabling efficient long-horizon reasoning and precise fine-grained control. However, the interface between these hierarchy levels remains underexplored, and existing hierarchical methods often ignore domain symmetry, resulting in the need for extensive demonstrations to achieve robust performance. To address these issues, we propose Hierarchical Equivariant Policy (HEP), a novel hierarchical policy framework. We propose a frame transfer interface for hierarchical policy learning, which uses the high-level agent's output as a coordinate frame for the low-level agent, providing a strong inductive bias while retaining flexibility. Additionally, we integrate domain symmetries into both levels and theoretically demonstrate the system's overall equivariance. HEP achieves state-of-the-art performance in complex robotic manipulation tasks, demonstrating significant improvements in both simulation and real-world settings.


Coarse-to-Fine 3D Keyframe Transporter

arXiv.org Artificial Intelligence

Recent advances in Keyframe Imitation Learning (IL) have enabled learning-based agents to solve a diverse range of manipulation tasks. However, most approaches ignore the rich symmetries in the problem setting and, as a consequence, are sample-inefficient. This work identifies and utilizes the bi-equivariant symmetry within Keyframe IL to design a policy that generalizes to transformations of both the workspace and the objects grasped by the gripper. We make two main contributions: First, we analyze the bi-equivariance properties of the keyframe action scheme and propose a Keyframe Transporter derived from the Transporter Networks, which evaluates actions using cross-correlation between the features of the grasped object and the features of the scene. Second, we propose a computationally efficient coarse-to-fine SE(3) action evaluation scheme for reasoning the intertwined translation and rotation action. The resulting method outperforms strong Keyframe IL baselines by an average of >10% on a wide range of simulation tasks, and by an average of 55% in 4 physical experiments.


Equivariant Action Sampling for Reinforcement Learning and Planning

arXiv.org Artificial Intelligence

Reinforcement learning (RL) algorithms for continuous control tasks require accurate sampling-based action selection. Many tasks, such as robotic manipulation, contain inherent problem symmetries. However, correctly incorporating symmetry into sampling-based approaches remains a challenge. This work addresses the challenge of preserving symmetry in sampling-based planning and control, a key component for enhancing decision-making efficiency in RL. We introduce an action sampling approach that enforces the desired symmetry. We apply our proposed method to a coordinate regression problem and show that the symmetry aware sampling method drastically outperforms the naive sampling approach. We furthermore develop a general framework for sampling-based model-based planning with Model Predictive Path Integral (MPPI). We compare our MPPI approach with standard sampling methods on several continuous control tasks.


ThinkGrasp: A Vision-Language System for Strategic Part Grasping in Clutter

arXiv.org Artificial Intelligence

The field of robotic grasping has seen significant advancements in recent years, with deep learning and vision-language models driving progress towards more intelligent and adaptable grasping systems [1, 2, 3]. However, robotic grasping in highly cluttered environments remains a major challenge, as target objects are often severely occluded or completely hidden [4, 5, 6]. Even stateof-the-art methods struggle to accurately identify and grasp objects in such scenarios. To address this challenge, we propose ThinkGrasp, which combines the strength of large-scale pretrained vision-language models with an occlusion handling system. ThinkGrasp leverages the advanced reasoning capabilities of models like GPT-4o [7] to gain a visual understanding of environmental and object properties such as sharpness and material composition. By integrating this knowledge through a structured prompt-based chain of thought, ThinkGrasp can significantly enhance success rates and ensure the safety of grasp poses by strategically eliminating obstructing objects. For instance, it prioritizes larger and centrally located objects to maximize visibility and access and focuses on grasping the safest and most advantageous parts, such as handles or flat surfaces. Unlike VL-Grasp[8], which relies on the RoboRefIt dataset for robotic perception and reasoning, ThinkGrasp benefits from GPT-4o's reasoning and generalization capabilities. This allows ThinkGrasp to intuitively select the right objects and achieve higher performance in complex environments, as demonstrated by our comparative experiments.


OrbitGrasp: $SE(3)$-Equivariant Grasp Learning

arXiv.org Artificial Intelligence

While grasp detection is an important part of any robotic manipulation pipeline, reliable and accurate grasp detection in $SE(3)$ remains a research challenge. Many robotics applications in unstructured environments such as the home or warehouse would benefit a lot from better grasp performance. This paper proposes a novel framework for detecting $SE(3)$ grasp poses based on point cloud input. Our main contribution is to propose an $SE(3)$-equivariant model that maps each point in the cloud to a continuous grasp quality function over the 2-sphere $S^2$ using a spherical harmonic basis. Compared with reasoning about a finite set of samples, this formulation improves the accuracy and efficiency of our model when a large number of samples would otherwise be needed. In order to accomplish this, we propose a novel variation on EquiFormerV2 that leverages a UNet-style backbone to enlarge the number of points the model can handle. Our resulting method, which we name $\textit{OrbitGrasp}$, significantly outperforms baselines in both simulation and physical experiments.


Fourier Transporter: Bi-Equivariant Robotic Manipulation in 3D

arXiv.org Artificial Intelligence

Many complex robotic manipulation tasks can be decomposed as a sequence of pick and place actions. Training a robotic agent to learn this sequence over many different starting conditions typically requires many iterations or demonstrations, especially in 3D environments. In this work, we propose Fourier Transporter (\ours{}) which leverages the two-fold $\SE(d)\times\SE(d)$ symmetry in the pick-place problem to achieve much higher sample efficiency. \ours{} is an open-loop behavior cloning method trained using expert demonstrations to predict pick-place actions on new environments. \ours{} is constrained to incorporate symmetries of the pick and place actions independently. Our method utilizes a fiber space Fourier transformation that allows for memory-efficient construction. We test our proposed network on the RLbench benchmark and achieve state-of-the-art results across various tasks.


A General Theory of Correct, Incorrect, and Extrinsic Equivariance

arXiv.org Machine Learning

Although equivariant machine learning has proven effective at many tasks, success depends heavily on the assumption that the ground truth function is symmetric over the entire domain matching the symmetry in an equivariant neural network. A missing piece in the equivariant learning literature is the analysis of equivariant networks when symmetry exists only partially in the domain. In this work, we present a general theory for such a situation. We propose pointwise definitions of correct, incorrect, and extrinsic equivariance, which allow us to quantify continuously the degree of each type of equivariance a function displays. We then study the impact of various degrees of incorrect or extrinsic symmetry on model error. We prove error lower bounds for invariant or equivariant networks in classification or regression settings with partially incorrect symmetry. We also analyze the potentially harmful effects of extrinsic equivariance.


Can Euclidean Symmetry be Leveraged in Reinforcement Learning and Planning?

arXiv.org Artificial Intelligence

In robotic tasks, changes in reference frames typically do not influence the underlying physical properties of the system, which has been known as invariance of physical laws. These changes, which preserve distance, encompass isometric transformations such as translations, rotations, and reflections, collectively known as the Euclidean group. In this work, we delve into the design of improved learning algorithms for reinforcement learning and planning tasks that possess Euclidean group symmetry. We put forth a theory on that unify prior work on discrete and continuous symmetry in reinforcement learning, planning, and optimal control. Algorithm side, we further extend the 2D path planning with value-based planning to continuous MDPs and propose a pipeline for constructing equivariant sampling-based planning algorithms. Our work is substantiated with empirical evidence and illustrated through examples that explain the benefits of equivariance to Euclidean symmetry in tackling natural control problems.


On Robot Grasp Learning Using Equivariant Models

arXiv.org Artificial Intelligence

Real-world grasp detection is challenging due to the stochasticity in grasp dynamics and the noise in hardware. Ideally, the system would adapt to the real world by training directly on physical systems. However, this is generally difficult due to the large amount of training data required by most grasp learning models. In this paper, we note that the planar grasp function is $\SE(2)$-equivariant and demonstrate that this structure can be used to constrain the neural network used during learning. This creates an inductive bias that can significantly improve the sample efficiency of grasp learning and enable end-to-end training from scratch on a physical robot with as few as $600$ grasp attempts. We call this method Symmetric Grasp learning (SymGrasp) and show that it can learn to grasp ``from scratch'' in less that 1.5 hours of physical robot time.


Integrating Symmetry into Differentiable Planning with Steerable Convolutions

arXiv.org Artificial Intelligence

We study how group symmetry helps improve data efficiency and generalization for end-to-end differentiable planning algorithms when symmetry appears in decision-making tasks. Motivated by equivariant convolution networks, we treat the path planning problem as \textit{signals} over grids. We show that value iteration in this case is a linear equivariant operator, which is a (steerable) convolution. This extends Value Iteration Networks (VINs) on using convolutional networks for path planning with additional rotation and reflection symmetry. Our implementation is based on VINs and uses steerable convolution networks to incorporate symmetry. The experiments are performed on four tasks: 2D navigation, visual navigation, and 2 degrees of freedom (2DOFs) configuration space and workspace manipulation. Our symmetric planning algorithms improve training efficiency and generalization by large margins compared to non-equivariant counterparts, VIN and GPPN.