Zhao, Haoran
Building Machine Learning Challenges for Anomaly Detection in Science
Campolongo, Elizabeth G., Chou, Yuan-Tang, Govorkova, Ekaterina, Bhimji, Wahid, Chao, Wei-Lun, Harris, Chris, Hsu, Shih-Chieh, Lapp, Hilmar, Neubauer, Mark S., Namayanja, Josephine, Subramanian, Aneesh, Harris, Philip, Anand, Advaith, Carlyn, David E., Ghosh, Subhankar, Lawrence, Christopher, Moreno, Eric, Raikman, Ryan, Wu, Jiaman, Zhang, Ziheng, Adhi, Bayu, Gharehtoragh, Mohammad Ahmadi, Monsalve, Saúl Alonso, Babicz, Marta, Baig, Furqan, Banerji, Namrata, Bardon, William, Barna, Tyler, Berger-Wolf, Tanya, Dieng, Adji Bousso, Brachman, Micah, Buat, Quentin, Hui, David C. Y., Cao, Phuong, Cerino, Franco, Chang, Yi-Chun, Chaulagain, Shivaji, Chen, An-Kai, Chen, Deming, Chen, Eric, Chou, Chia-Jui, Ciou, Zih-Chen, Cochran-Branson, Miles, Choi, Artur Cordeiro Oudot, Coughlin, Michael, Cremonesi, Matteo, Dadarlat, Maria, Darch, Peter, Desai, Malina, Diaz, Daniel, Dillmann, Steven, Duarte, Javier, Duporge, Isla, Ekka, Urbas, Heravi, Saba Entezari, Fang, Hao, Flynn, Rian, Fox, Geoffrey, Freed, Emily, Gao, Hang, Gao, Jing, Gonski, Julia, Graham, Matthew, Hashemi, Abolfazl, Hauck, Scott, Hazelden, James, Peterson, Joshua Henry, Hoang, Duc, Hu, Wei, Huennefeld, Mirco, Hyde, David, Janeja, Vandana, Jaroenchai, Nattapon, Jia, Haoyi, Kang, Yunfan, Kholiavchenko, Maksim, Khoda, Elham E., Kim, Sangin, Kumar, Aditya, Lai, Bo-Cheng, Le, Trung, Lee, Chi-Wei, Lee, JangHyeon, Lee, Shaocheng, van der Lee, Suzan, Lewis, Charles, Li, Haitong, Li, Haoyang, Liao, Henry, Liu, Mia, Liu, Xiaolin, Liu, Xiulong, Loncar, Vladimir, Lyu, Fangzheng, Makarov, Ilya, Mao, Abhishikth Mallampalli Chen-Yu, Michels, Alexander, Migala, Alexander, Mokhtar, Farouk, Morlighem, Mathieu, Namgung, Min, Novak, Andrzej, Novick, Andrew, Orsborn, Amy, Padmanabhan, Anand, Pan, Jia-Cheng, Pandya, Sneh, Pei, Zhiyuan, Peixoto, Ana, Percivall, George, Leung, Alex Po, Purushotham, Sanjay, Que, Zhiqiang, Quinnan, Melissa, Ranjan, Arghya, Rankin, Dylan, Reissel, Christina, Riedel, Benedikt, Rubenstein, Dan, Sasli, Argyro, Shlizerman, Eli, Singh, Arushi, Singh, Kim, Sokol, Eric R., Sorensen, Arturo, Su, Yu, Taheri, Mitra, Thakkar, Vaibhav, Thomas, Ann Mariam, Toberer, Eric, Tsai, Chenghan, Vandewalle, Rebecca, Verma, Arjun, Venterea, Ricco C., Wang, He, Wang, Jianwu, Wang, Sam, Wang, Shaowen, Watts, Gordon, Weitz, Jason, Wildridge, Andrew, Williams, Rebecca, Wolf, Scott, Xu, Yue, Yan, Jianqi, Yu, Jai, Zhang, Yulei, Zhao, Haoran, Zhao, Ying, Zhong, Yibo
Scientific discoveries are often made by finding a pattern or object that was not predicted by the known rules of science. Oftentimes, these anomalous events or objects that do not conform to the norms are an indication that the rules of science governing the data are incomplete, and something new needs to be present to explain these unexpected outliers. The challenge of finding anomalies can be confounding since it requires codifying a complete knowledge of the known scientific behaviors and then projecting these known behaviors on the data to look for deviations. When utilizing machine learning, this presents a particular challenge since we require that the model not only understands scientific data perfectly but also recognizes when the data is inconsistent and out of the scope of its trained behavior. In this paper, we present three datasets aimed at developing machine learning-based anomaly detection for disparate scientific domains covering astrophysics, genomics, and polar science. We present the different datasets along with a scheme to make machine learning challenges around the three datasets findable, accessible, interoperable, and reusable (FAIR). Furthermore, we present an approach that generalizes to future machine learning challenges, enabling the possibility of large, more compute-intensive challenges that can ultimately lead to scientific discovery.
Who's the MVP? A Game-Theoretic Evaluation Benchmark for Modular Attribution in LLM Agents
Yang, Yingxuan, Huang, Bo, Qi, Siyuan, Feng, Chao, Hu, Haoyi, Zhu, Yuxuan, Hu, Jinbo, Zhao, Haoran, He, Ziyi, Liu, Xiao, Wang, Zongyu, Qiu, Lin, Cao, Xuezhi, Cai, Xunliang, Yu, Yong, Zhang, Weinan
Large Language Model (LLM) agents frameworks often employ modular architectures, incorporating components such as planning, reasoning, action execution, and reflection to tackle complex tasks. However, quantifying the contribution of each module to overall system performance remains a significant challenge, impeding optimization and interpretability. To address this, we introduce CapaBench (Capability-level Assessment Benchmark), an evaluation framework grounded in cooperative game theory's Shapley Value, which systematically measures the marginal impact of individual modules and their interactions within an agent's architecture. By replacing default modules with test variants across all possible combinations, CapaBench provides a principle method for attributing performance contributions. Key contributions include: (1) We are the first to propose a Shapley Value-based methodology for quantifying the contributions of capabilities in LLM agents; (2) Modules with high Shapley Values consistently lead to predictable performance gains when combined, enabling targeted optimization; and (3) We build a multi-round dataset of over 1,500 entries spanning diverse domains and practical task scenarios, enabling comprehensive evaluation of agent capabilities. CapaBench bridges the gap between component-level evaluation and holistic system assessment, providing actionable insights for optimizing modular LLM agents and advancing their deployment in complex, real-world scenarios.
Humanity's Last Exam
Phan, Long, Gatti, Alice, Han, Ziwen, Li, Nathaniel, Hu, Josephina, Zhang, Hugh, Zhang, Chen Bo Calvin, Shaaban, Mohamed, Ling, John, Shi, Sean, Choi, Michael, Agrawal, Anish, Chopra, Arnav, Khoja, Adam, Kim, Ryan, Ren, Richard, Hausenloy, Jason, Zhang, Oliver, Mazeika, Mantas, Nguyen, Tung, Anderson, Daron, Shah, Imad Ali, Doroshenko, Mikhail, Stokes, Alun Cennyth, Mahmood, Mobeen, Lee, Jaeho, Pokutnyi, Oleksandr, Iskra, Oleg, Wang, Jessica P., Gerbicz, Robert, Levin, John-Clark, Popov, Serguei, Feng, Fiona, Feng, Steven Y., Zhao, Haoran, Yu, Michael, Gangal, Varun, Zou, Chelsea, Wang, Zihan, Kazakov, Mstyslav, Galgon, Geoff, Schmitt, Johannes, Sanchez, Alvaro, Lee, Yongki, Yeadon, Will, Sauers, Scott, Roth, Marc, Agu, Chidozie, Riis, Søren, Giska, Fabian, Utpala, Saiteja, Cheatom, Antrell, Giboney, Zachary, Goshu, Gashaw M., Crowson, Sarah-Jane, Naiya, Mohinder Maheshbhai, Burns, Noah, Finke, Lennart, Cheng, Zerui, Park, Hyunwoo, Fournier-Facio, Francesco, Zampese, Jennifer, Wydallis, John, Wydallis, John B., Hoerr, Ryan G., Nandor, Mark, Gehrunger, Tim, Cai, Jiaqi, McCarty, Ben, Nam, Jungbae, Taylor, Edwin, Jin, Jun, Loume, Gautier Abou, Cao, Hangrui, Garretson, Alexis C, Sileo, Damien, Ren, Qiuyu, Cojoc, Doru, Arkhipov, Pavel, Qazi, Usman, Bacho, Aras, Li, Lianghui, Motwani, Sumeet, de Witt, Christian Schroeder, Kopylov, Alexei, Veith, Johannes, Singer, Eric, Rissone, Paolo, Jin, Jaehyeok, Shi, Jack Wei Lun, Willcocks, Chris G., Prabhu, Ameya, Tang, Longke, Zhou, Kevin, Santos, Emily de Oliveira, Maksimov, Andrey Pupasov, Vendrow, Edward, Zenitani, Kengo, Robinson, Joshua, Mikov, Aleksandar, Guillod, Julien, Li, Yuqi, Pageler, Ben, Vendrow, Joshua, Kuchkin, Vladyslav, Marion, Pierre, Efremov, Denis, Lynch, Jayson, Liang, Kaiqu, Gritsevskiy, Andrew, Martinez, Dakotah, Crispino, Nick, Zvonkine, Dimitri, Fraga, Natanael Wildner, Soori, Saeed, Press, Ori, Tang, Henry, Salazar, Julian, Green, Sean R., Brüssel, Lina, Twayana, Moon, Dieuleveut, Aymeric, Rogers, T. Ryan, Zhang, Wenjin, Finocchio, Ross, Li, Bikun, Yang, Jinzhou, Rao, Arun, Loiseau, Gabriel, Kalinin, Mikhail, Lukas, Marco, Manolescu, Ciprian, Stambaugh, Nate, Mishra, Subrata, Kamdoum, Ariel Ghislain Kemogne, Hogg, Tad, Jin, Alvin, Bosio, Carlo, Sun, Gongbo, Coppola, Brian P, Heidinger, Haline, Sayous, Rafael, Ivanov, Stefan, Cavanagh, Joseph M, Shen, Jiawei, Imperial, Joseph Marvin, Schwaller, Philippe, Senthilkuma, Shaipranesh, Bran, Andres M, Algaba, Andres, Verbeken, Brecht, Houte, Kelsey Van den, Van Der Sypt, Lynn, Noever, David, Schut, Lisa, Sucholutsky, Ilia, Zheltonozhskii, Evgenii, Yuan, Qiaochu, Lim, Derek, Stanley, Richard, Sivarajan, Shankar, Yang, Tong, Maar, John, Wykowski, Julian, Oller, Martí, Sandlin, Jennifer, Sahu, Anmol, Ardito, Cesare Giulio, Hu, Yuzheng, Dias, Felipe Meneguitti, Kreiman, Tobias, Rawal, Kaivalya, Vilchis, Tobias Garcia, Zu, Yuexuan, Lackner, Martin, Koppel, James, Nguyen, Jeremy, Antonenko, Daniil S., Chern, Steffi, Zhao, Bingchen, Arsene, Pierrot, Ivanov, Sergey, Poświata, Rafał, Wang, Chenguang, Li, Daofeng, Crisostomi, Donato, Dehghan, Ali, Achilleos, Andrea, Ambay, John Arnold, Myklebust, Benjamin, Sen, Archan, Perrella, David, Kaparov, Nurdin, Inlow, Mark H, Zang, Allen, Ramakrishnan, Kalyan, Orel, Daniil, Poritski, Vladislav, Ben-David, Shalev, Berger, Zachary, Whitfill, Parker, Foster, Michael, Munro, Daniel, Ho, Linh, Hava, Dan Bar, Kuchkin, Aleksey, Lauff, Robert, Holmes, David, Sommerhage, Frank, Zhang, Anji, Moat, Richard, Schneider, Keith, Pyda, Daniel, Kazibwe, Zakayo, Singh, Mukhwinder, Clarke, Don, Kim, Dae Hyun, Fish, Sara, Elser, Veit, Vilchis, Victor Efren Guadarrama, Klose, Immo, Demian, Christoph, Anantheswaran, Ujjwala, Zweiger, Adam, Albani, Guglielmo, Li, Jeffery, Daans, Nicolas, Radionov, Maksim, Rozhoň, Václav, Ginis, Vincent, Ma, Ziqiao, Stump, Christian, Platnick, Jacob, Nevirkovets, Volodymyr, Basler, Luke, Piccardo, Marco, Cohen, Niv, Singh, Virendra, Tkadlec, Josef, Rosu, Paul, Goldfarb, Alan, Padlewski, Piotr, Barzowski, Stanislaw, Montgomery, Kyle, Menezes, Aline, Patel, Arkil, Wang, Zixuan, Tucker-Foltz, Jamie, Stade, Jack, Grabb, Declan, Goertzen, Tom, Kazemi, Fereshteh, Milbauer, Jeremiah, Shukla, Abhishek, Elgnainy, Hossam, Labrador, Yan Carlos Leyva, He, Hao, Zhang, Ling, Givré, Alan, Wolff, Hew, Demir, Gözdenur, Aziz, Muhammad Fayez, Kaddar, Younesse, Ängquist, Ivar, Chen, Yanxu, Thornley, Elliott, Zhang, Robin, Pan, Jiayi, Terpin, Antonio, Muennighoff, Niklas, Schoelkopf, Hailey, Zheng, Eric, Carmi, Avishy, Shah, Jainam, Brown, Ethan D. L., Zhu, Kelin, Bartolo, Max, Wheeler, Richard, Ho, Andrew, Barkan, Shaul, Wang, Jiaqi, Stehberger, Martin, Kretov, Egor, Bradshaw, Peter, Heimonen, JP, Sridhar, Kaustubh, Hossain, Zaki, Akov, Ido, Makarychev, Yury, Tam, Joanna, Hoang, Hieu, Cunningham, David M., Goryachev, Vladimir, Patramanis, Demosthenes, Krause, Michael, Redenti, Andrew, Aldous, David, Lai, Jesyin, Coleman, Shannon, Xu, Jiangnan, Lee, Sangwon, Magoulas, Ilias, Zhao, Sandy, Tang, Ning, Cohen, Michael K., Carroll, Micah, Paradise, Orr, Kirchner, Jan Hendrik, Steinerberger, Stefan, Ovchynnikov, Maksym, Matos, Jason O., Shenoy, Adithya, Wang, Michael, Nie, Yuzhou, Giordano, Paolo, Petersen, Philipp, Sztyber-Betley, Anna, Faraboschi, Paolo, Riblet, Robin, Crozier, Jonathan, Halasyamani, Shiv, Pinto, Antonella, Verma, Shreyas, Joshi, Prashant, Meril, Eli, Yong, Zheng-Xin, Tee, Allison, Andréoletti, Jérémy, Weller, Orion, Singhal, Raghav, Zhang, Gang, Ivanov, Alexander, Khoury, Seri, Gustafsson, Nils, Mostaghimi, Hamid, Thaman, Kunvar, Chen, Qijia, Khánh, Tran Quoc, Loader, Jacob, Cavalleri, Stefano, Szlyk, Hannah, Brown, Zachary, Narayan, Himanshu, Roberts, Jonathan, Alley, William, Sun, Kunyang, Stendall, Ryan, Lamparth, Max, Reuel, Anka, Wang, Ting, Xu, Hanmeng, Hernández-Cámara, Pablo, Martin, Freddie, Preu, Thomas, Korbak, Tomek, Abramovitch, Marcus, Williamson, Dominic, Bosio, Ida, Chen, Ziye, Bálint, Biró, Lo, Eve J. Y., Nunes, Maria Inês S., Jiang, Yibo, Bari, M Saiful, Kassani, Peyman, Wang, Zihao, Ansarinejad, Behzad, Sun, Yewen, Durand, Stephane, Douville, Guillaume, Tordera, Daniel, Balabanian, George, Anderson, Earth, Kvistad, Lynna, Moyano, Alejandro José, Milliron, Hsiaoyun, Sakor, Ahmad, Eron, Murat, McAlister, Isaac C., O., Andrew Favre D., Shah, Shailesh, Zhou, Xiaoxiang, Kamalov, Firuz, Clark, Ronald, Abdoli, Sherwin, Santens, Tim, Wang, Harrison K, Chen, Evan, Tomasiello, Alessandro, De Luca, G. Bruno, Looi, Shi-Zhuo, Le, Vinh-Kha, Kolt, Noam, Mündler, Niels, Semler, Avi, Rodman, Emma, Drori, Jacob, Fossum, Carl J, Gloor, Luk, Jagota, Milind, Pradeep, Ronak, Fan, Honglu, Shah, Tej, Eicher, Jonathan, Chen, Michael, Thaman, Kushal, Merrill, William, Firsching, Moritz, Harris, Carter, Ciobâcă, Stefan, Gross, Jason, Pandey, Rohan, Gusev, Ilya, Jones, Adam, Agnihotri, Shashank, Zhelnov, Pavel, Usawasutsakorn, Siranut, Mofayezi, Mohammadreza, Piperski, Alexander, Carauleanu, Marc, Zhang, David K., Dobarskyi, Kostiantyn, Ler, Dylan, Leventov, Roman, Soroko, Ignat, Jansen, Thorben, Creighton, Scott, Lauer, Pascal, Duersch, Joshua, Taamazyan, Vage, Bezzi, Dario, Morak, Wiktor, Ma, Wenjie, Held, William, Huy, Tran Đuc, Xian, Ruicheng, Zebaze, Armel Randy, Mohamed, Mohanad, Leser, Julian Noah, Yuan, Michelle X, Yacar, Laila, Lengler, Johannes, Olszewska, Katarzyna, Shahrtash, Hossein, Oliveira, Edson, Jackson, Joseph W., Gonzalez, Daniel Espinosa, Zou, Andy, Chidambaram, Muthu, Manik, Timothy, Haffenden, Hector, Stander, Dashiell, Dasouqi, Ali, Shen, Alexander, Duc, Emilien, Golshani, Bita, Stap, David, Uzhou, Mikalai, Zhidkovskaya, Alina Borisovna, Lewark, Lukas, Rodriguez, Miguel Orbegozo, Vincze, Mátyás, Wehr, Dustin, Tang, Colin, Phillips, Shaun, Samuele, Fortuna, Muzhen, Jiang, Ekström, Fredrik, Hammon, Angela, Patel, Oam, Farhidi, Faraz, Medley, George, Mohammadzadeh, Forough, Peñaflor, Madellene, Kassahun, Haile, Friedrich, Alena, Sparrow, Claire, Perez, Rayner Hernandez, Sakal, Taom, Dhamane, Omkar, Mirabadi, Ali Khajegili, Hallman, Eric, Okutsu, Kenchi, Battaglia, Mike, Maghsoudimehrabani, Mohammad, Amit, Alon, Hulbert, Dave, Pereira, Roberto, Weber, Simon, Handoko, null, Peristyy, Anton, Malina, Stephen, Albanie, Samuel, Cai, Will, Mehkary, Mustafa, Aly, Rami, Reidegeld, Frank, Dick, Anna-Katharina, Friday, Cary, Sidhu, Jasdeep, Shapourian, Hassan, Kim, Wanyoung, Costa, Mariana, Gurdogan, Hubeyb, Weber, Brian, Kumar, Harsh, Jiang, Tong, Agarwal, Arunim, Ceconello, Chiara, Vaz, Warren S., Zhuang, Chao, Park, Haon, Tawfeek, Andrew R., Aggarwal, Daattavya, Kirchhof, Michael, Dai, Linjie, Kim, Evan, Ferret, Johan, Wang, Yuzhou, Yan, Minghao, Burdzy, Krzysztof, Zhang, Lixin, Franca, Antonio, Pham, Diana T., Loh, Kang Yong, Robinson, Joshua, Jackson, Abram, Gul, Shreen, Chhablani, Gunjan, Du, Zhehang, Cosma, Adrian, Colino, Jesus, White, Colin, Votava, Jacob, Vinnikov, Vladimir, Delaney, Ethan, Spelda, Petr, Stritecky, Vit, Shahid, Syed M., Mourrat, Jean-Christophe, Vetoshkin, Lavr, Sponselee, Koen, Bacho, Renas, de la Rosa, Florencia, Li, Xiuyu, Malod, Guillaume, Lang, Leon, Laurendeau, Julien, Kazakov, Dmitry, Adesanya, Fatimah, Portier, Julien, Hollom, Lawrence, Souza, Victor, Zhou, Yuchen Anna, Degorre, Julien, Yalın, Yiğit, Obikoya, Gbenga Daniel, Arnaboldi, Luca, Rai, null, Bigi, Filippo, Boscá, M. C., Shumar, Oleg, Bacho, Kaniuar, Clavier, Pierre, Recchia, Gabriel, Popescu, Mara, Shulga, Nikita, Tanwie, Ngefor Mildred, Peskoff, Denis, Lux, Thomas C. H., Rank, Ben, Ni, Colin, Brooks, Matthew, Yakimchyk, Alesia, Huanxu, null, Liu, null, Häggström, Olle, Verkama, Emil, Gundlach, Hans, Brito-Santana, Leonor, Amaro, Brian, Vajipey, Vivek, Grover, Rynaa, Fan, Yiyang, Silva, Gabriel Poesia Reis e, Xin, Linwei, Kratish, Yosi, Łucki, Jakub, Li, Wen-Ding, Gopi, Sivakanth, Caciolai, Andrea, Xu, Justin, Scaria, Kevin Joseph, Vargus, Freddie, Habibi, Farzad, Long, null, Lian, null, Rodolà, Emanuele, Robins, Jules, Cheng, Vincent, Fruhauff, Tony, Raynor, Brad, Qi, Hao, Jiang, Xi, Segev, Ben, Fan, Jingxuan, Martinson, Sarah, Wang, Erik Y., Hausknecht, Kaylie, Brenner, Michael P., Mao, Mao, Zhang, Xinyu, Avagian, David, Scipio, Eshawn Jessica, Ragoler, Alon, Tan, Justin, Sims, Blake, Plecnik, Rebeka, Kirtland, Aaron, Bodur, Omer Faruk, Shinde, D. P., Adoul, Zahra, Zekry, Mohamed, Karakoc, Ali, Santos, Tania C. B., Shamseldeen, Samir, Karim, Loukmane, Liakhovitskaia, Anna, Resman, Nate, Farina, Nicholas, Gonzalez, Juan Carlos, Maayan, Gabe, Hoback, Sarah, Pena, Rodrigo De Oliveira, Sherman, Glen, Kelley, Elizabeth, Mariji, Hodjat, Pouriamanesh, Rasoul, Wu, Wentao, Mendoza, Sandra, Alarab, Ismail, Cole, Joshua, Ferreira, Danyelle, Johnson, Bryan, Safdari, Mohammad, Dai, Liangti, Arthornthurasuk, Siriphan, Pronin, Alexey, Fan, Jing, Ramirez-Trinidad, Angel, Cartwright, Ashley, Pottmaier, Daphiny, Taheri, Omid, Outevsky, David, Stepanic, Stanley, Perry, Samuel, Askew, Luke, Rodríguez, Raúl Adrián Huerta, Minissi, Ali M. R., Ali, Sam, Lorena, Ricardo, Iyer, Krishnamurthy, Fasiludeen, Arshad Anil, Salauddin, Sk Md, Islam, Murat, Gonzalez, Juan, Ducey, Josh, Somrak, Maja, Mavroudis, Vasilios, Vergo, Eric, Qin, Juehang, Borbás, Benjámin, Chu, Eric, Lindsey, Jack, Radhakrishnan, Anil, Jallon, Antoine, McInnis, I. M. J., Kumar, Pawan, Goswami, Laxman Prasad, Bugas, Daniel, Heydari, Nasser, Jeanplong, Ferenc, Apronti, Archimedes, Galal, Abdallah, Ze-An, Ng, Singh, Ankit, Xavier, Joan of Arc, Agarwal, Kanu Priya, Berkani, Mohammed, Junior, Benedito Alves de Oliveira, Malishev, Dmitry, Remy, Nicolas, Hartman, Taylor D., Tarver, Tim, Mensah, Stephen, Gimenez, Javier, Montecillo, Roselynn Grace, Campbell, Russell, Sharma, Asankhaya, Meer, Khalida, Alapont, Xavier, Patil, Deepakkumar, Maheshwari, Rajat, Dendane, Abdelkader, Shukla, Priti, Bogdanov, Sergei, Möller, Sören, Siddiqi, Muhammad Rehan, Saxena, Prajvi, Gupta, Himanshu, Enyekwe, Innocent, P, Ragavendran V, EL-Wasif, Zienab, Maksapetyan, Aleksandr, Rossbach, Vivien, Harjadi, Chris, Bahaloohoreh, Mohsen, Bian, Song, Lai, John, Uro, Justine Leon, Bateman, Greg, Sayed, Mohamed, Menshawy, Ahmed, Duclosel, Darling, Jain, Yashaswini, Aaron, Ashley, Tiryakioglu, Murat, Siddh, Sheeshram, Krenek, Keith, Hoover, Alex, McGowan, Joseph, Patwardhan, Tejal, Yue, Summer, Wang, Alexandr, Hendrycks, Dan
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
Non-literal Understanding of Number Words by Language Models
Tsvilodub, Polina, Gandhi, Kanishk, Zhao, Haoran, Fränken, Jan-Philipp, Franke, Michael, Goodman, Noah D.
Humans naturally interpret numbers non-literally, effortlessly combining context, world knowledge, and speaker intent. We investigate whether large language models (LLMs) interpret numbers similarly, focusing on hyperbole and pragmatic halo effects. Through systematic comparison with human data and computational models of pragmatic reasoning, we find that LLMs diverge from human interpretation in striking ways. By decomposing pragmatic reasoning into testable components, grounded in the Rational Speech Act framework, we pinpoint where LLM processing diverges from human cognition -- not in prior knowledge, but in reasoning with it. This insight leads us to develop a targeted solution -- chain-of-thought prompting inspired by an RSA model makes LLMs' interpretations more human-like. Our work demonstrates how computational cognitive models can both diagnose AI-human differences and guide development of more human-like language understanding capabilities.
Minimum-Time Planar Paths with up to Two Constant Acceleration Inputs and $L_2$ Velocity and Acceleration Constraints
Baez, Victor M., Zhao, Haoran, Abdurahiman, Nihal, Navkar, Nikhil V., Becker, Aaron T.
Given starting and ending positions and velocities, $L_2$ bounds on the acceleration and velocity, and the restriction to no more than two constant control inputs, this paper provides routines to compute the minimal-time path. Closed form solutions are provided for reaching a position in minimum time with and without a velocity bound, and for stopping at the goal position. A numeric solver is used to reach a goal position and velocity with no more than two constant control inputs. If a cruising phase at the terminal velocity is needed, this requires solving a non-linear equation with a single parameter. Code is provided on GitHub at https://github.com/RoboticSwarmControl/MinTimeL2pathsConstraints.
GenFormer: A Deep-Learning-Based Approach for Generating Multivariate Stochastic Processes
Zhao, Haoran, Uy, Wayne Isaac Tan
Stochastic generators are essential to produce synthetic realizations that preserve target statistical properties. We propose GenFormer, a stochastic generator for spatio-temporal multivariate stochastic processes. It is constructed using a Transformer-based deep learning model that learns a mapping between a Markov state sequence and time series values. The synthetic data generated by the GenFormer model preserves the target marginal distributions and approximately captures other desired statistical properties even in challenging applications involving a large number of spatial locations and a long simulation horizon. The GenFormer model is applied to simulate synthetic wind speed data at various stations in Florida to calculate exceedance probabilities for risk management.
TopCoW: Benchmarking Topology-Aware Anatomical Segmentation of the Circle of Willis (CoW) for CTA and MRA
Yang, Kaiyuan, Musio, Fabio, Ma, Yihui, Juchler, Norman, Paetzold, Johannes C., Al-Maskari, Rami, Höher, Luciano, Li, Hongwei Bran, Hamamci, Ibrahim Ethem, Sekuboyina, Anjany, Shit, Suprosanna, Huang, Houjing, Waldmannstetter, Diana, Kofler, Florian, Navarro, Fernando, Menten, Martin, Ezhov, Ivan, Rueckert, Daniel, Vos, Iris, Ruigrok, Ynte, Velthuis, Birgitta, Kuijf, Hugo, Hämmerli, Julien, Wurster, Catherine, Bijlenga, Philippe, Westphal, Laura, Bisschop, Jeroen, Colombo, Elisa, Baazaoui, Hakim, Makmur, Andrew, Hallinan, James, Wiestler, Bene, Kirschke, Jan S., Wiest, Roland, Montagnon, Emmanuel, Letourneau-Guillon, Laurent, Galdran, Adrian, Galati, Francesco, Falcetta, Daniele, Zuluaga, Maria A., Lin, Chaolong, Zhao, Haoran, Zhang, Zehan, Ra, Sinyoung, Hwang, Jongyun, Park, Hyunjin, Chen, Junqiang, Wodzinski, Marek, Müller, Henning, Shi, Pengcheng, Liu, Wei, Ma, Ting, Yalçin, Cansu, Hamadache, Rachika E., Salvi, Joaquim, Llado, Xavier, Estrada, Uma Maria Lal-Trehan, Abramova, Valeriia, Giancardo, Luca, Oliver, Arnau, Liu, Jialu, Huang, Haibin, Cui, Yue, Lin, Zehang, Liu, Yusheng, Zhu, Shunzhi, Patel, Tatsat R., Tutino, Vincent M., Orouskhani, Maysam, Wang, Huayu, Mossa-Basha, Mahmud, Zhu, Chengcheng, Rokuss, Maximilian R., Kirchhoff, Yannick, Disch, Nico, Holzschuh, Julius, Isensee, Fabian, Maier-Hein, Klaus, Sato, Yuki, Hirsch, Sven, Wegener, Susanne, Menze, Bjoern
The Circle of Willis (CoW) is an important network of arteries connecting major circulations of the brain. Its vascular architecture is believed to affect the risk, severity, and clinical outcome of serious neuro-vascular diseases. However, characterizing the highly variable CoW anatomy is still a manual and time-consuming expert task. The CoW is usually imaged by two angiographic imaging modalities, magnetic resonance angiography (MRA) and computed tomography angiography (CTA), but there exist limited public datasets with annotations on CoW anatomy, especially for CTA. Therefore we organized the TopCoW Challenge in 2023 with the release of an annotated CoW dataset. The TopCoW dataset was the first public dataset with voxel-level annotations for thirteen possible CoW vessel components, enabled by virtual-reality (VR) technology. It was also the first large dataset with paired MRA and CTA from the same patients. TopCoW challenge formalized the CoW characterization problem as a multiclass anatomical segmentation task with an emphasis on topological metrics. We invited submissions worldwide for the CoW segmentation task, which attracted over 140 registered participants from four continents. The top performing teams managed to segment many CoW components to Dice scores around 90%, but with lower scores for communicating arteries and rare variants. There were also topological mistakes for predictions with high Dice scores. Additional topological analysis revealed further areas for improvement in detecting certain CoW components and matching CoW variant topology accurately. TopCoW represented a first attempt at benchmarking the CoW anatomical segmentation task for MRA and CTA, both morphologically and topologically.
Agent as Cerebrum, Controller as Cerebellum: Implementing an Embodied LMM-based Agent on Drones
Zhao, Haoran, Pan, Fengxing, Ping, Huqiuyue, Zhou, Yaoming
In this study, we present a novel paradigm for industrial robotic embodied agents, encapsulating an 'agent as cerebrum, controller as cerebellum' architecture. Our approach harnesses the power of Large Multimodal Models (LMMs) within an agent framework known as AeroAgent, tailored for drone technology in industrial settings. To facilitate seamless integration with robotic systems, we introduce ROSchain, a bespoke linkage framework connecting LMM-based agents to the Robot Operating System (ROS). We report findings from extensive empirical research, including simulated experiments on the Airgen and real-world case study, particularly in individual search and rescue operations. The results demonstrate AeroAgent's superior performance in comparison to existing Deep Reinforcement Learning (DRL)-based agents, highlighting the advantages of the embodied LMM in complex, real-world scenarios.
Bit Cipher -- A Simple yet Powerful Word Representation System that Integrates Efficiently with Language Models
Zhao, Haoran, Williams, Jake Ryland
While Large Language Models (LLMs) become ever more dominant, classic pre-trained word embeddings sustain their relevance through computational efficiency and nuanced linguistic interpretation. Drawing from recent studies demonstrating that the convergence of GloVe and word2vec optimizations all tend towards log-co-occurrence matrix variants, we construct a novel word representation system called Bit-cipher that eliminates the need of backpropagation while leveraging contextual information and hyper-efficient dimensionality reduction techniques based on unigram frequency, providing strong interpretability, alongside efficiency. We use the bit-cipher algorithm to train word vectors via a two-step process that critically relies on a hyperparameter -- bits -- that controls the vector dimension. While the first step trains the bit-cipher, the second utilizes it under two different aggregation modes -- summation or concatenation -- to produce contextually rich representations from word co-occurrences. We extend our investigation into bit-cipher's efficacy, performing probing experiments on part-of-speech (POS) tagging and named entity recognition (NER) to assess its competitiveness with classic embeddings like word2vec and GloVe. Additionally, we explore its applicability in LM training and fine-tuning. By replacing embedding layers with cipher embeddings, our experiments illustrate the notable efficiency of cipher in accelerating the training process and attaining better optima compared to conventional training paradigms. Experiments on the integration of bit-cipher embedding layers with Roberta, T5, and OPT, prior to or as a substitute for fine-tuning, showcase a promising enhancement to transfer learning, allowing rapid model convergence while preserving competitive performance.
Explicit Foundation Model Optimization with Self-Attentive Feed-Forward Neural Units
Williams, Jake Ryland, Zhao, Haoran
Iterative approximation methods using backpropagation enable the optimization of neural networks, but they remain computationally expensive, especially when used at scale. This paper presents an efficient alternative for optimizing neural networks that reduces the costs of scaling neural networks and provides high-efficiency optimizations for low-resource applications. We will discuss a general result about feed-forward neural networks and then extend this solution to compositional (mult-layer) networks, which are applied to a simplified transformer block containing feed-forward and self-attention layers. These models are used to train highly-specified and complex multi-layer neural architectures that we refer to as self-attentive feed-forward unit (SAFFU) layers, which we use to develop a transformer that appears to generalize well over small, cognitively-feasible, volumes of data. Testing demonstrates explicit solutions outperform models optimized by backpropagation alone. Moreover, further application of backpropagation after explicit solutions leads to better optima from smaller scales of data, training effective models from much less data is enabled by explicit solution warm starts. We then carry out ablation experiments training a roadmap of about 250 transformer models over 1-million tokens to determine ideal settings. We find that multiple different architectural variants produce highly-performant models, and discover from this ablation that some of the best are not the most parameterized. This appears to indicate well-generalized models could be reached using less data by using explicit solutions, and that architectural exploration using explicit solutions pays dividends in guiding the search for efficient variants with fewer parameters, and which could be incorporated into low-resource hardware where AI might be embodied.