Zhang, Peiyuan
Point2RBox-v2: Rethinking Point-supervised Oriented Object Detection with Spatial Layout Among Instances
Yu, Yi, Ren, Botao, Zhang, Peiyuan, Liu, Mingxin, Luo, Junwei, Zhang, Shaofeng, Da, Feipeng, Yan, Junchi, Yang, Xue
With the rapidly increasing demand for oriented object detection (OOD), recent research involving weakly-supervised detectors for learning OOD from point annotations has gained great attention. In this paper, we rethink this challenging task setting with the layout among instances and present Point2RBox-v2. At the core are three principles: 1) Gaussian overlap loss. It learns an upper bound for each instance by treating objects as 2D Gaussian distributions and minimizing their overlap. 2) Voronoi watershed loss. It learns a lower bound for each instance through watershed on Voronoi tessellation. 3) Consistency loss. It learns the size/rotation variation between two output sets with respect to an input image and its augmented view. Supplemented by a few devised techniques, e.g. edge loss and copy-paste, the detector is further enhanced. To our best knowledge, Point2RBox-v2 is the first approach to explore the spatial layout among instances for learning point-supervised OOD. Our solution is elegant and lightweight, yet it is expected to give a competitive performance especially in densely packed scenes: 62.61%/86.15%/34.71% on DOTA/HRSC/FAIR1M. Code is available at https://github.com/VisionXLab/point2rbox-v2.
PointOBB-v3: Expanding Performance Boundaries of Single Point-Supervised Oriented Object Detection
Zhang, Peiyuan, Luo, Junwei, Yang, Xue, Yu, Yi, Li, Qingyun, Zhou, Yue, Jia, Xiaosong, Lu, Xudong, Chen, Jingdong, Li, Xiang, Yan, Junchi, Li, Yansheng
With the growing demand for oriented object detection (OOD), recent studies on point-supervised OOD have attracted significant interest. In this paper, we propose PointOBB-v3, a stronger single point-supervised OOD framework. Compared to existing methods, it generates pseudo rotated boxes without additional priors and incorporates support for the end-to-end paradigm. PointOBB-v3 functions by integrating three unique image views: the original view, a resized view, and a rotated/flipped (rot/flp) view. Based on the views, a scale augmentation module and an angle acquisition module are constructed. In the first module, a Scale-Sensitive Consistency (SSC) loss and a Scale-Sensitive Feature Fusion (SSFF) module are introduced to improve the model's ability to estimate object scale. To achieve precise angle predictions, the second module employs symmetry-based self-supervised learning. Additionally, we introduce an end-to-end version that eliminates the pseudo-label generation process by integrating a detector branch and introduces an Instance-Aware Weighting (IAW) strategy to focus on high-quality predictions. We conducted extensive experiments on the DIOR-R, DOTA-v1.0/v1.5/v2.0, FAIR1M, STAR, and RSAR datasets. Across all these datasets, our method achieves an average improvement in accuracy of 3.56% in comparison to previous state-of-the-art methods. The code will be available at https://github.com/ZpyWHU/PointOBB-v3.
Criteria and Bias of Parameterized Linear Regression under Edge of Stability Regime
Zhang, Peiyuan, Karbasi, Amin
Classical optimization theory requires a small step-size for gradient-based methods to converge. Nevertheless, recent findings challenge the traditional idea by empirically demonstrating Gradient Descent (GD) converges even when the step-size $\eta$ exceeds the threshold of $2/L$, where $L$ is the global smooth constant. This is usually known as the Edge of Stability (EoS) phenomenon. A widely held belief suggests that an objective function with subquadratic growth plays an important role in incurring EoS. In this paper, we provide a more comprehensive answer by considering the task of finding linear interpolator $\beta \in R^{d}$ for regression with loss function $l(\cdot)$, where $\beta$ admits parameterization as $\beta = w^2_{+} - w^2_{-}$. Contrary to the previous work that suggests a subquadratic $l$ is necessary for EoS, our novel finding reveals that EoS occurs even when $l$ is quadratic under proper conditions. This argument is made rigorous by both empirical and theoretical evidence, demonstrating the GD trajectory converges to a linear interpolator in a non-asymptotic way. Moreover, the model under quadratic $l$, also known as a depth-$2$ diagonal linear network, remains largely unexplored under the EoS regime. Our analysis then sheds some new light on the implicit bias of diagonal linear networks when a larger step-size is employed, enriching the understanding of EoS on more practical models.
Temporal Reasoning Transfer from Text to Video
Li, Lei, Liu, Yuanxin, Yao, Linli, Zhang, Peiyuan, An, Chenxin, Wang, Lean, Sun, Xu, Kong, Lingpeng, Liu, Qi
Video Large Language Models (Video LLMs) have shown promising capabilities in video comprehension, yet they struggle with tracking temporal changes and reasoning about temporal relationships. While previous research attributed this limitation to the ineffective temporal encoding of visual inputs, our diagnostic study reveals that video representations contain sufficient information for even small probing classifiers to achieve perfect accuracy. Surprisingly, we find that the key bottleneck in Video LLMs' temporal reasoning capability stems from the underlying LLM's inherent difficulty with temporal concepts, as evidenced by poor performance on textual temporal question-answering tasks. Building on this discovery, we introduce the Textual Temporal reasoning Transfer (T3). T3 synthesizes diverse temporal reasoning tasks in pure text format from existing image-text datasets, addressing the scarcity of video samples with complex temporal scenarios. Remarkably, without using any video data, T3 enhances LongVA-7B's temporal understanding, yielding a 5.3 absolute accuracy improvement on the challenging TempCompass benchmark, which enables our model to outperform ShareGPT4Video-8B trained on 28,000 video samples. Additionally, the enhanced LongVA-7B model achieves competitive performance on comprehensive video benchmarks. For example, it achieves a 49.7 accuracy on the Temporal Reasoning task of Video-MME, surpassing powerful large-scale models such as InternVL-Chat-V1.5-20B and VILA1.5-40B. Further analysis reveals a strong correlation between textual and video temporal task performance, validating the efficacy of transferring temporal reasoning abilities from text to video domains.
LMMs-Eval: Reality Check on the Evaluation of Large Multimodal Models
Zhang, Kaichen, Li, Bo, Zhang, Peiyuan, Pu, Fanyi, Cahyono, Joshua Adrian, Hu, Kairui, Liu, Shuai, Zhang, Yuanhan, Yang, Jingkang, Li, Chunyuan, Liu, Ziwei
The advances of large foundation models necessitate wide-coverage, low-cost, and zero-contamination benchmarks. Despite continuous exploration of language model evaluations, comprehensive studies on the evaluation of Large Multi-modal Models (LMMs) remain limited. In this work, we introduce LMMS-EVAL, a unified and standardized multimodal benchmark framework with over 50 tasks and more than 10 models to promote transparent and reproducible evaluations. Although LMMS-EVAL offers comprehensive coverage, we find it still falls short in achieving low cost and zero contamination. To approach this evaluation trilemma, we further introduce LMMS-EVAL LITE, a pruned evaluation toolkit that emphasizes both coverage and efficiency. Additionally, we present Multimodal LIVEBENCH that utilizes continuously updating news and online forums to assess models' generalization abilities in the wild, featuring a low-cost and zero-contamination evaluation approach. In summary, our work highlights the importance of considering the evaluation trilemma and provides practical solutions to navigate the trade-offs in evaluating large multi-modal models, paving the way for more effective and reliable benchmarking of LMMs. We opensource our codebase and maintain leaderboard of LIVEBENCH at https://github.com/EvolvingLMMs-Lab/lmms-eval and https://huggingface.co/spaces/lmms-lab/LiveBench.
TinyLlama: An Open-Source Small Language Model
Zhang, Peiyuan, Zeng, Guangtao, Wang, Tianduo, Lu, Wei
Building on the architecture and tokenizer of Llama 2 (Touvron et al., 2023b), TinyLlama leverages various advances contributed by the open-source community (e.g., FlashAttention (Dao, 2023)), achieving better computational efficiency. Despite its relatively small size, TinyLlama demonstrates remarkable performance in a series of downstream tasks. It significantly outperforms existing open-source language models with comparable sizes.
OtterHD: A High-Resolution Multi-modality Model
Li, Bo, Zhang, Peiyuan, Yang, Jingkang, Zhang, Yuanhan, Pu, Fanyi, Liu, Ziwei
In this paper, we present OtterHD-8B, an innovative multimodal model evolved from Fuyu-8B, specifically engineered to interpret high-resolution visual inputs with granular precision. Unlike conventional models that are constrained by fixed-size vision encoders, OtterHD-8B boasts the ability to handle flexible input dimensions, ensuring its versatility across various inference requirements. Alongside this model, we introduce MagnifierBench, an evaluation framework designed to scrutinize models' ability to discern minute details and spatial relationships of small objects. Our comparative analysis reveals that while current leading models falter on this benchmark, OtterHD-8B, particularly when directly processing high-resolution inputs, outperforms its counterparts by a substantial margin. The findings illuminate the structural variances in visual information processing among different models and the influence that the vision encoders' pre-training resolution disparities have on model effectiveness within such benchmarks. Our study highlights the critical role of flexibility and high-resolution input capabilities in large multimodal models and also exemplifies the potential inherent in the Fuyu architecture's simplicity for handling complex visual data.
One Network, Many Masks: Towards More Parameter-Efficient Transfer Learning
Zeng, Guangtao, Zhang, Peiyuan, Lu, Wei
Fine-tuning pre-trained language models for multiple tasks tends to be expensive in terms of storage. To mitigate this, parameter-efficient transfer learning (PETL) methods have been proposed to address this issue, but they still require a significant number of parameters and storage when being applied to broader ranges of tasks. To achieve even greater storage reduction, we propose PROPETL, a novel method that enables efficient sharing of a single PETL module which we call prototype network (e.g., adapter, LoRA, and prefix-tuning) across layers and tasks. We then learn binary masks to select different sub-networks from the shared prototype network and apply them as PETL modules into different layers. We find that the binary masks can determine crucial information from the network, which is often ignored in previous studies. Our work can also be seen as a type of pruning method, where we find that overparameterization also exists in the seemingly small PETL modules. We evaluate PROPETL on various downstream tasks and show that it can outperform other PETL methods with approximately 10% of the parameter storage required by the latter.
Lower Generalization Bounds for GD and SGD in Smooth Stochastic Convex Optimization
Zhang, Peiyuan, Teng, Jiaye, Zhang, Jingzhao
This work studies the generalization error of gradient methods. More specifically, we focus on how training steps $T$ and step-size $\eta$ might affect generalization in smooth stochastic convex optimization (SCO) problems. We first provide tight excess risk lower bounds for Gradient Descent (GD) and Stochastic Gradient Descent (SGD) under the general non-realizable smooth SCO setting, suggesting that existing stability analyses are tight in step-size and iteration dependence, and that overfitting provably happens. Next, we study the case when the loss is realizable, i.e. an optimal solution minimizes all the data points. Recent works show better rates can be attained but the improvement is reduced when training time is long. Our paper examines this observation by providing excess risk lower bounds for GD and SGD in two realizable settings: 1) $\eta T = \bigO{n}$, and (2) $\eta T = \bigOmega{n}$, where $n$ is the size of dataset. In the first case $\eta T = \bigOmega{n}$, our lower bounds tightly match and certify the respective upper bounds. However, for the case $\eta T = \bigOmega{n}$, our analysis indicates a gap between the lower and upper bounds. A conjecture is proposed that the gap can be closed by improving upper bounds, supported by analyses in two special scenarios.
Minimax in Geodesic Metric Spaces: Sion's Theorem and Algorithms
Zhang, Peiyuan, Zhang, Jingzhao, Sra, Suvrit
Determining whether saddle points exist or are approximable for nonconvex-nonconcave problems is usually intractable. We take a step towards understanding certain nonconvex-nonconcave minimax problems that do remain tractable. Specifically, we study minimax problems cast in geodesic metric spaces, which provide a vast generalization of the usual convex-concave saddle point problems. The first main result of the paper is a geodesic metric space version of Sion's minimax theorem; we believe our proof is novel and transparent, as it relies on Helly's theorem only. In our second main result, we specialize to geodesically complete Riemannian manifolds: we devise and analyze the complexity of first-order methods for smooth minimax problems.