Goto

Collaborating Authors

 Zhang, Cun-Hui


UCB algorithms for multi-armed bandits: Precise regret and adaptive inference

arXiv.org Machine Learning

Upper Confidence Bound (UCB) algorithms are a widely-used class of sequential algorithms for the $K$-armed bandit problem. Despite extensive research over the past decades aimed at understanding their asymptotic and (near) minimax optimality properties, a precise understanding of their regret behavior remains elusive. This gap has not only hindered the evaluation of their actual algorithmic efficiency, but also limited further developments in statistical inference in sequential data collection. This paper bridges these two fundamental aspects--precise regret analysis and adaptive statistical inference--through a deterministic characterization of the number of arm pulls for an UCB index algorithm [Lai87, Agr95, ACBF02]. Our resulting precise regret formula not only accurately captures the actual behavior of the UCB algorithm for finite time horizons and individual problem instances, but also provides significant new insights into the regimes in which the existing theory remains informative. In particular, we show that the classical Lai-Robbins regret formula is exact if and only if the sub-optimality gaps exceed the order $\sigma\sqrt{K\log T/T}$. We also show that its maximal regret deviates from the minimax regret by a logarithmic factor, and therefore settling its strict minimax optimality in the negative. The deterministic characterization of the number of arm pulls for the UCB algorithm also has major implications in adaptive statistical inference. Building on the seminal work of [Lai82], we show that the UCB algorithm satisfies certain stability properties that lead to quantitative central limit theorems in two settings including the empirical means of unknown rewards in the bandit setting. These results have an important practical implication: conventional confidence sets designed for i.i.d. data remain valid even when data are collected sequentially.


On Lai's Upper Confidence Bound in Multi-Armed Bandits

arXiv.org Machine Learning

In this memorial paper, we honor Tze Leung Lai's seminal contributions to the topic of multi-armed bandits, with a specific focus on his pioneering work on the upper confidence bound. We establish sharp non-asymptotic regret bounds for an upper confidence bound index with a constant level of exploration for Gaussian rewards. Furthermore, we establish a non-asymptotic regret bound for the upper confidence bound index of Lai (1987) which employs an exploration function that decreases with the sample size of the corresponding arm. The regret bounds have leading constants that match the Lai-Robbins lower bound. Our results highlight an aspect of Lai's seminal works that deserves more attention in the machine learning literature.


Adaptive Linear Estimating Equations

arXiv.org Machine Learning

Sequential data collection has emerged as a widely adopted technique for enhancing the efficiency of data gathering processes. Despite its advantages, such data collection mechanism often introduces complexities to the statistical inference procedure. For instance, the ordinary least squares (OLS) estimator in an adaptive linear regression model can exhibit non-normal asymptotic behavior, posing challenges for accurate inference and interpretation. In this paper, we propose a general method for constructing debiased estimator which remedies this issue. It makes use of the idea of adaptive linear estimating equations, and we establish theoretical guarantees of asymptotic normality, supplemented by discussions on achieving near-optimal asymptotic variance. A salient feature of our estimator is that in the context of multi-armed bandits, our estimator retains the non-asymptotic performance of the least squares estimator while obtaining asymptotic normality property. Consequently, this work helps connect two fruitful paradigms of adaptive inference: a) non-asymptotic inference using concentration inequalities and b) asymptotic inference via asymptotic normality.


Statistical Limits of Adaptive Linear Models: Low-Dimensional Estimation and Inference

arXiv.org Artificial Intelligence

Estimation and inference in statistics pose significant challenges when data are collected adaptively. Even in linear models, the Ordinary Least Squares (OLS) estimator may fail to exhibit asymptotic normality for single coordinate estimation and have inflated error. This issue is highlighted by a recent minimax lower bound, which shows that the error of estimating a single coordinate can be enlarged by a multiple of $\sqrt{d}$ when data are allowed to be arbitrarily adaptive, compared with the case when they are i.i.d. Our work explores this striking difference in estimation performance between utilizing i.i.d. and adaptive data. We investigate how the degree of adaptivity in data collection impacts the performance of estimating a low-dimensional parameter component in high-dimensional linear models. We identify conditions on the data collection mechanism under which the estimation error for a low-dimensional parameter component matches its counterpart in the i.i.d. setting, up to a factor that depends on the degree of adaptivity. We show that OLS or OLS on centered data can achieve this matching error. In addition, we propose a novel estimator for single coordinate inference via solving a Two-stage Adaptive Linear Estimating equation (TALE). Under a weaker form of adaptivity in data collection, we establish an asymptotic normality property of the proposed estimator.


Tensor Principal Component Analysis in High Dimensional CP Models

arXiv.org Machine Learning

The CP decomposition for high dimensional non-orthogonal spike tensors is an important problem with broad applications across many disciplines. However, previous works with theoretical guarantee typically assume restrictive incoherence conditions on the basis vectors for the CP components. In this paper, we propose new computationally efficient composite PCA and concurrent orthogonalization algorithms for tensor CP decomposition with theoretical guarantees under mild incoherence conditions. The composite PCA applies the principal component or singular value decompositions twice, first to a matrix unfolding of the tensor data to obtain singular vectors and then to the matrix folding of the singular vectors obtained in the first step. It can be used as an initialization for any iterative optimization schemes for the tensor CP decomposition. The concurrent orthogonalization algorithm iteratively estimates the basis vector in each mode of the tensor by simultaneously applying projections to the orthogonal complements of the spaces generated by others CP components in other modes. It is designed to improve the alternating least squares estimator and other forms of the high order orthogonal iteration for tensors with low or moderately high CP ranks. Our theoretical investigation provides estimation accuracy and statistical convergence rates for the two proposed algorithms. Our implementations on synthetic data demonstrate significant practical superiority of our approach over existing methods.


Asymptotic normality of robust $M$-estimators with convex penalty

arXiv.org Machine Learning

This paper develops asymptotic normality results for individual coordinates of robust M-estimators with convex penalty in high-dimensions, where the dimension $p$ is at most of the same order as the sample size $n$, i.e, $p/n\le\gamma$ for some fixed constant $\gamma>0$. The asymptotic normality requires a bias correction and holds for most coordinates of the M-estimator for a large class of loss functions including the Huber loss and its smoothed versions regularized with a strongly convex penalty. The asymptotic variance that characterizes the width of the resulting confidence intervals is estimated with data-driven quantities. This estimate of the variance adapts automatically to low ($p/n\to0)$ or high ($p/n \le \gamma$) dimensions and does not involve the proximal operators seen in previous works on asymptotic normality of M-estimators. For the Huber loss, the estimated variance has a simple expression involving an effective degrees-of-freedom as well as an effective sample size. The case of the Huber loss with Elastic-Net penalty is studied in details and a simulation study confirms the theoretical findings. The asymptotic normality results follow from Stein formulae for high-dimensional random vectors on the sphere developed in the paper which are of independent interest.


De-Biasing The Lasso With Degrees-of-Freedom Adjustment

arXiv.org Machine Learning

This paper studies schemes to de-bias the Lasso in sparse linear regression where the goal is to estimate and construct confidence intervals for a low-dimensional projection of the unknown coefficient vector in a preconceived direction $a_0$. We assume that the design matrix has iid Gaussian rows with known covariance matrix $\Sigma$. Our analysis reveals that previous propositions to de-bias the Lasso require a modification in order to enjoy asymptotic efficiency in a full range of the level of sparsity. This modification takes the form of a degrees-of-freedom adjustment that accounts for the dimension of the model selected by the Lasso. Let $s_0$ denote the number of nonzero coefficients of the true coefficient vector. The unadjusted de-biasing schemes proposed in previous studies enjoys efficiency if $s_0\lll n^{2/3}$, up to logarithmic factors. However, if $s_0\ggg n^{2/3}$, the unadjusted scheme cannot be efficient in certain directions $a_0$. In the latter regime, it it necessary to modify existing procedures by an adjustment that accounts for the degrees-of-freedom of the Lasso. The proposed degrees-of-freedom adjustment grants asymptotic efficiency for any direction $a_0$. This holds under a Sparse Riecz Condition on the covariance matrix $\Sigma$ and the sample size requirement $s_0/p\to0$ and $s_0\log(p/s_0)/n\to0$. Our analysis also highlights that the degrees-of-freedom adjustment is not necessary when the initial bias of the Lasso in the direction $a_0$ is small, which is granted under more stringent conditions on $\Sigma^{-1}$. This explains why the necessity of degrees-of-freedom adjustment did not appear in some previous studies. The main proof argument involves a Gaussian interpolation path similar to that used to derive Slepian's lemma. It yields a sharp $\ell_\infty$ error bound for the Lasso under Gaussian design which is of independent interest.


Statistically Optimal and Computationally Efficient Low Rank Tensor Completion from Noisy Entries

arXiv.org Machine Learning

In this article, we develop methods for estimating a low rank tensor from noisy observations on a subset of its entries to achieve both statistical and computational efficiencies. There have been a lot of recent interests in this problem of noisy tensor completion. Much of the attention has been focused on the fundamental computational challenges often associated with problems involving higher order tensors, yet very little is known about their statistical performance. To fill in this void, in this article, we characterize the fundamental statistical limits of noisy tensor completion by establishing minimax optimal rates of convergence for estimating a $k$th order low rank tensor under the general $\ell_p$ ($1\le p\le 2$) norm which suggest significant room for improvement over the existing approaches. Furthermore, we propose a polynomial-time computable estimating procedure based upon power iteration and a second-order spectral initialization that achieves the optimal rates of convergence. Our method is fairly easy to implement and numerical experiments are presented to further demonstrate the practical merits of our estimator.


Asymptotic normality and optimalities in estimation of large Gaussian graphical models

arXiv.org Machine Learning

The Gaussian graphical model, a popular paradigm for studying relationship among variables in a wide range of applications, has attracted great attention in recent years. This paper considers a fundamental question: When is it possible to estimate low-dimensional parameters at parametric square-root rate in a large Gaussian graphical model? A novel regression approach is proposed to obtain asymptotically efficient estimation of each entry of a precision matrix under a sparseness condition relative to the sample size. When the precision matrix is not sufficiently sparse, or equivalently the sample size is not sufficiently large, a lower bound is established to show that it is no longer possible to achieve the parametric rate in the estimation of each entry. This lower bound result, which provides an answer to the delicate sample size question, is established with a novel construction of a subset of sparse precision matrices in an application of Le Cam's lemma. Moreover, the proposed estimator is proven to have optimal convergence rate when the parametric rate cannot be achieved, under a minimal sample requirement. The proposed estimator is applied to test the presence of an edge in the Gaussian graphical model or to recover the support of the entire model, to obtain adaptive rate-optimal estimation of the entire precision matrix as measured by the matrix $\ell_q$ operator norm and to make inference in latent variables in the graphical model. All of this is achieved under a sparsity condition on the precision matrix and a side condition on the range of its spectrum. This significantly relaxes the commonly imposed uniform signal strength condition on the precision matrix, irrepresentability condition on the Hessian tensor operator of the covariance matrix or the $\ell_1$ constraint on the precision matrix. Numerical results confirm our theoretical findings. The ROC curve of the proposed algorithm, Asymptotic Normal Thresholding (ANT), for support recovery significantly outperforms that of the popular GLasso algorithm.


Optimality of Graphlet Screening in High Dimensional Variable Selection

arXiv.org Machine Learning

Consider a linear regression model where the design matrix X has n rows and p columns. We assume (a) p is much large than n, (b) the coefficient vector beta is sparse in the sense that only a small fraction of its coordinates is nonzero, and (c) the Gram matrix G = X'X is sparse in the sense that each row has relatively few large coordinates (diagonals of G are normalized to 1). The sparsity in G naturally induces the sparsity of the so-called graph of strong dependence (GOSD). We find an interesting interplay between the signal sparsity and the graph sparsity, which ensures that in a broad context, the set of true signals decompose into many different small-size components of GOSD, where different components are disconnected. We propose Graphlet Screening (GS) as a new approach to variable selection, which is a two-stage Screen and Clean method. The key methodological innovation of GS is to use GOSD to guide both the screening and cleaning. Compared to m-variate brute-forth screening that has a computational cost of p^m, the GS only has a computational cost of p (up to some multi-log(p) factors) in screening. We measure the performance of any variable selection procedure by the minimax Hamming distance. We show that in a very broad class of situations, GS achieves the optimal rate of convergence in terms of the Hamming distance. Somewhat surprisingly, the well-known procedures subset selection and the lasso are rate non-optimal, even in very simple settings and even when their tuning parameters are ideally set.