Goto

Collaborating Authors

 Zanardi, Alessandro


Tactical Game-theoretic Decision-making with Homotopy Class Constraints

arXiv.org Artificial Intelligence

We propose a tactical homotopy-aware decision-making framework for game-theoretic motion planning in urban environments. We model urban driving as a generalized Nash equilibrium problem and employ a mixed-integer approach to tame the combinatorial aspect of motion planning. More specifically, by utilizing homotopy classes, we partition the high-dimensional solution space into finite, well-defined subregions. Each subregion (homotopy) corresponds to a high-level tactical decision, such as the passing order between pairs of players. The proposed formulation allows to find global optimal Nash equilibria in a computationally tractable manner by solving a mixed-integer quadratic program. Each homotopy decision is represented by a binary variable that activates different sets of linear collision avoidance constraints. This extra homotopic constraint allows to find solutions in a more efficient way (on a roundabout scenario on average 5-times faster). We experimentally validate the proposed approach on scenarios taken from the rounD dataset. Simulation-based testing in receding horizon fashion demonstrates the capability of the framework in achieving globally optimal solutions while yielding a 78% average decrease in the computational time with respect to an implementation without the homotopic constraints.


A Counterfactual Safety Margin Perspective on the Scoring of Autonomous Vehicles' Riskiness

arXiv.org Artificial Intelligence

Autonomous Vehicles (AVs) promise a range of societal advantages, including broader access to mobility, reduced road accidents, and enhanced transportation efficiency. However, evaluating the risks linked to AVs is complex due to limited historical data and the swift progression of technology. This paper presents a data-driven framework for assessing the risk of different AVs' behaviors in various operational design domains (ODDs), based on counterfactual simulations of "misbehaving" road users. We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision. This methodology not only pinpoints the most critical scenarios but also quantifies the (relative) risk's frequency and severity concerning AVs. Importantly, we show that our approach is applicable even when the AV's behavioral policy remains undisclosed, through worst- and best-case analyses, benefiting external entities like regulators and risk evaluators. Our experimental outcomes demonstrate the correlation between the safety margin, the quality of the driving policy, and the ODD, shedding light on the relative risks of different AV providers. Overall, this work contributes to the safety assessment of AVs and addresses legislative and insurance concerns surrounding this burgeoning technology.


Factorization of Multi-Agent Sampling-Based Motion Planning

arXiv.org Artificial Intelligence

Modern robotics often involves multiple embodied agents operating within a shared environment. Path planning in these cases is considerably more challenging than in single-agent scenarios. Although standard Sampling-based Algorithms (SBAs) can be used to search for solutions in the robots' joint space, this approach quickly becomes computationally intractable as the number of agents increases. To address this issue, we integrate the concept of factorization into sampling-based algorithms, which requires only minimal modifications to existing methods. During the search for a solution we can decouple (i.e., factorize) different subsets of agents into independent lower-dimensional search spaces once we certify that their future solutions will be independent of each other using a factorization heuristic. Consequently, we progressively construct a lean hypergraph where certain (hyper-)edges split the agents to independent subgraphs. In the best case, this approach can reduce the growth in dimensionality of the search space from exponential to linear in the number of agents. On average, fewer samples are needed to find high-quality solutions while preserving the optimality, completeness, and anytime properties of SBAs. We present a general implementation of a factorized SBA, derive an analytical gain in terms of sample complexity for PRM*, and showcase empirical results for RRG.


How Bad is Selfish Driving? Bounding the Inefficiency of Equilibria in Urban Driving Games

arXiv.org Artificial Intelligence

We consider the interaction among agents engaging in a driving task and we model it as general-sum game. This class of games exhibits a plurality of different equilibria posing the issue of equilibrium selection. While selecting the most efficient equilibrium (in term of social cost) is often impractical from a computational standpoint, in this work we study the (in)efficiency of any equilibrium players might agree to play. More specifically, we bound the equilibrium inefficiency by modeling driving games as particular type of congestion games over spatio-temporal resources. We obtain novel guarantees that refine existing bounds on the Price of Anarchy (PoA) as a function of problem-dependent game parameters. For instance, the relative trade-off between proximity costs and personal objectives such as comfort and progress. Although the obtained guarantees concern open-loop trajectories, we observe efficient equilibria even when agents employ closed-loop policies trained via decentralized multi-agent reinforcement learning.