Goto

Collaborating Authors

 Yu, Yi


Locally Private Nonparametric Contextual Multi-armed Bandits

arXiv.org Machine Learning

Motivated by privacy concerns in sequential decision-making on sensitive data, we address the challenge of nonparametric contextual multi-armed bandits (MAB) under local differential privacy (LDP). We develop a uniform-confidence-bound-type estimator, showing its minimax optimality supported by a matching minimax lower bound. We further consider the case where auxiliary datasets are available, subject also to (possibly heterogeneous) LDP constraints. Under the widely-used covariate shift framework, we propose a jump-start scheme to effectively utilize the auxiliary data, the minimax optimality of which is further established by a matching lower bound. Comprehensive experiments on both synthetic and real-world datasets validate our theoretical results and underscore the effectiveness of the proposed methods.


Theoretical Insights in Model Inversion Robustness and Conditional Entropy Maximization for Collaborative Inference Systems

arXiv.org Machine Learning

By locally encoding raw data into intermediate features, collaborative inference enables end users to leverage powerful deep learning models without exposure of sensitive raw data to cloud servers. However, recent studies have revealed that these intermediate features may not sufficiently preserve privacy, as information can be leaked and raw data can be reconstructed via model inversion attacks (MIAs). Obfuscation-based methods, such as noise corruption, adversarial representation learning, and information filters, enhance the inversion robustness by obfuscating the task-irrelevant redundancy empirically. However, methods for quantifying such redundancy remain elusive, and the explicit mathematical relation between this redundancy minimization and inversion robustness enhancement has not yet been established. To address that, this work first theoretically proves that the conditional entropy of inputs given intermediate features provides a guaranteed lower bound on the reconstruction mean square error (MSE) under any MIA. Then, we derive a differentiable and solvable measure for bounding this conditional entropy based on the Gaussian mixture estimation and propose a conditional entropy maximization (CEM) algorithm to enhance the inversion robustness. Experimental results on four datasets demonstrate the effectiveness and adaptability of our proposed CEM; without compromising feature utility and computing efficiency, plugging the proposed CEM into obfuscation-based defense mechanisms consistently boosts their inversion robustness, achieving average gains ranging from 12.9\% to 48.2\%. Code is available at \href{https://github.com/xiasong0501/CEM}{https://github.com/xiasong0501/CEM}.


X-Boundary: Establishing Exact Safety Boundary to Shield LLMs from Multi-Turn Jailbreaks without Compromising Usability

arXiv.org Artificial Intelligence

Despite the rapid development of safety alignment techniques for LLMs, defending against multi-turn jailbreaks is still a challenging task. In this paper, we conduct a comprehensive comparison, revealing that some existing defense methods can improve the robustness of LLMs against multi-turn jailbreaks but compromise usability, i.e., reducing general capabilities or causing the over-refusal problem. From the perspective of mechanism interpretability of LLMs, we discover that these methods fail to establish a boundary that exactly distinguishes safe and harmful feature representations. Therefore, boundary-safe representations close to harmful representations are inevitably disrupted, leading to a decline in usability. To address this issue, we propose X-Boundary to push harmful representations away from boundary-safe representations and obtain an exact distinction boundary. In this way, harmful representations can be precisely erased without disrupting safe ones. Experimental results show that X-Boundary achieves state-of-the-art defense performance against multi-turn jailbreaks, while reducing the over-refusal rate by about 20% and maintaining nearly complete general capability. Furthermore, we theoretically prove and empirically verify that X-Boundary can accelerate the convergence process during training. Please see our code at: https://github.com/AI45Lab/X-Boundary.


Wholly-WOOD: Wholly Leveraging Diversified-quality Labels for Weakly-supervised Oriented Object Detection

arXiv.org Artificial Intelligence

Accurately estimating the orientation of visual objects with compact rotated bounding boxes (RBoxes) has become a prominent demand, which challenges existing object detection paradigms that only use horizontal bounding boxes (HBoxes). To equip the detectors with orientation awareness, supervised regression/classification modules have been introduced at the high cost of rotation annotation. Meanwhile, some existing datasets with oriented objects are already annotated with horizontal boxes or even single points. It becomes attractive yet remains open for effectively utilizing weaker single point and horizontal annotations to train an oriented object detector (OOD). We develop Wholly-WOOD, a weakly-supervised OOD framework, capable of wholly leveraging various labeling forms (Points, HBoxes, RBoxes, and their combination) in a unified fashion. By only using HBox for training, our Wholly-WOOD achieves performance very close to that of the RBox-trained counterpart on remote sensing and other areas, significantly reducing the tedious efforts on labor-intensive annotation for oriented objects. The source codes are available at https://github.com/VisionXLab/whollywood (PyTorch-based) and https://github.com/VisionXLab/whollywood-jittor (Jittor-based).


One Example Shown, Many Concepts Known! Counterexample-Driven Conceptual Reasoning in Mathematical LLMs

arXiv.org Artificial Intelligence

Leveraging mathematical Large Language Models (LLMs) for proof generation is a fundamental topic in LLMs research. We argue that the ability of current LLMs to prove statements largely depends on whether they have encountered the relevant proof process during training. This reliance limits their deeper understanding of mathematical theorems and related concepts. Inspired by the pedagogical method of "proof by counterexamples" commonly used in human mathematics education, our work aims to enhance LLMs' ability to conduct mathematical reasoning and proof through counterexamples. Specifically, we manually create a high-quality, university-level mathematical benchmark, CounterMATH, which requires LLMs to prove mathematical statements by providing counterexamples, thereby assessing their grasp of mathematical concepts. Additionally, we develop a data engineering framework to automatically obtain training data for further model improvement. Extensive experiments and detailed analyses demonstrate that CounterMATH is challenging, indicating that LLMs, such as OpenAI o1, have insufficient counterexample-driven proof capabilities. Moreover, our exploration into model training reveals that strengthening LLMs' counterexample-driven conceptual reasoning abilities is crucial for improving their overall mathematical capabilities. We believe that our work offers new perspectives on the community of mathematical LLMs.


Point2RBox-v2: Rethinking Point-supervised Oriented Object Detection with Spatial Layout Among Instances

arXiv.org Artificial Intelligence

With the rapidly increasing demand for oriented object detection (OOD), recent research involving weakly-supervised detectors for learning OOD from point annotations has gained great attention. In this paper, we rethink this challenging task setting with the layout among instances and present Point2RBox-v2. At the core are three principles: 1) Gaussian overlap loss. It learns an upper bound for each instance by treating objects as 2D Gaussian distributions and minimizing their overlap. 2) Voronoi watershed loss. It learns a lower bound for each instance through watershed on Voronoi tessellation. 3) Consistency loss. It learns the size/rotation variation between two output sets with respect to an input image and its augmented view. Supplemented by a few devised techniques, e.g. edge loss and copy-paste, the detector is further enhanced. To our best knowledge, Point2RBox-v2 is the first approach to explore the spatial layout among instances for learning point-supervised OOD. Our solution is elegant and lightweight, yet it is expected to give a competitive performance especially in densely packed scenes: 62.61%/86.15%/34.71% on DOTA/HRSC/FAIR1M. Code is available at https://github.com/VisionXLab/point2rbox-v2.


Transfer Learning for Nonparametric Contextual Dynamic Pricing

arXiv.org Artificial Intelligence

Dynamic pricing strategies are crucial for firms to maximize revenue by adjusting prices based on market conditions and customer characteristics. However, designing optimal pricing strategies becomes challenging when historical data are limited, as is often the case when launching new products or entering new markets. One promising approach to overcome this limitation is to leverage information from related products or markets to inform the focal pricing decisions. In this paper, we explore transfer learning for nonparametric contextual dynamic pricing under a covariate shift model, where the marginal distributions of covariates differ between source and target domains while the reward functions remain the same. We propose a novel Transfer Learning for Dynamic Pricing (TLDP) algorithm that can effectively leverage pre-collected data from a source domain to enhance pricing decisions in the target domain. The regret upper bound of TLDP is established under a simple Lipschitz condition on the reward function. To establish the optimality of TLDP, we further derive a matching minimax lower bound, which includes the target-only scenario as a special case and is presented for the first time in the literature. Extensive numerical experiments validate our approach, demonstrating its superiority over existing methods and highlighting its practical utility in real-world applications.


PointOBB-v3: Expanding Performance Boundaries of Single Point-Supervised Oriented Object Detection

arXiv.org Artificial Intelligence

With the growing demand for oriented object detection (OOD), recent studies on point-supervised OOD have attracted significant interest. In this paper, we propose PointOBB-v3, a stronger single point-supervised OOD framework. Compared to existing methods, it generates pseudo rotated boxes without additional priors and incorporates support for the end-to-end paradigm. PointOBB-v3 functions by integrating three unique image views: the original view, a resized view, and a rotated/flipped (rot/flp) view. Based on the views, a scale augmentation module and an angle acquisition module are constructed. In the first module, a Scale-Sensitive Consistency (SSC) loss and a Scale-Sensitive Feature Fusion (SSFF) module are introduced to improve the model's ability to estimate object scale. To achieve precise angle predictions, the second module employs symmetry-based self-supervised learning. Additionally, we introduce an end-to-end version that eliminates the pseudo-label generation process by integrating a detector branch and introduces an Instance-Aware Weighting (IAW) strategy to focus on high-quality predictions. We conducted extensive experiments on the DIOR-R, DOTA-v1.0/v1.5/v2.0, FAIR1M, STAR, and RSAR datasets. Across all these datasets, our method achieves an average improvement in accuracy of 3.56% in comparison to previous state-of-the-art methods. The code will be available at https://github.com/ZpyWHU/PointOBB-v3.


DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

arXiv.org Artificial Intelligence

We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities. Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing reasoning behaviors. However, it encounters challenges such as poor readability, and language mixing. To address these issues and further enhance reasoning performance, we introduce DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-R1 achieves performance comparable to OpenAI-o1-1217 on reasoning tasks. To support the research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models (1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.


A Simple Aerial Detection Baseline of Multimodal Language Models

arXiv.org Artificial Intelligence

The multimodal language models (MLMs) based on generative pre-trained Transformer are considered powerful candidates for unifying various domains and tasks. MLMs developed for remote sensing (RS) have demonstrated outstanding performance in multiple tasks, such as visual question answering and visual grounding. In addition to visual grounding that detects specific objects corresponded to given instruction, aerial detection, which detects all objects of multiple categories, is also a valuable and challenging task for RS foundation models. However, aerial detection has not been explored by existing RS MLMs because the autoregressive prediction mechanism of MLMs differs significantly from the detection outputs. In this paper, we present a simple baseline for applying MLMs to aerial detection for the first time, named LMMRotate. Specifically, we first introduce a normalization method to transform detection outputs into textual outputs to be compatible with the MLM framework. Then, we propose a evaluation method, which ensures a fair comparison between MLMs and conventional object detection models. We construct the baseline by fine-tuning open-source general-purpose MLMs and achieve impressive detection performance comparable to conventional detector. We hope that this baseline will serve as a reference for future MLM development, enabling more comprehensive capabilities for understanding RS images. Code is available at https://github.com/Li-Qingyun/mllm-mmrotate.