Goto

Collaborating Authors

 Yu, Han


Understanding the Generalization of In-Context Learning in Transformers: An Empirical Study

arXiv.org Artificial Intelligence

Large language models (LLMs) like GPT-4 and LLaMA-3 utilize the powerful in-context learning (ICL) capability of Transformer architecture to learn on the fly from limited examples. While ICL underpins many LLM applications, its full potential remains hindered by a limited understanding of its generalization boundaries and vulnerabilities. We present a systematic investigation of transformers' generalization capability with ICL relative to training data coverage by defining a task-centric framework along three dimensions: inter-problem, intra-problem, and intra-task generalization. Through extensive simulation and real-world experiments, encompassing tasks such as function fitting, API calling, and translation, we find that transformers lack inter-problem generalization with ICL, but excel in intra-task and intra-problem generalization. When the training data includes a greater variety of mixed tasks, it significantly enhances the generalization ability of ICL on unseen tasks and even on known simple tasks. This guides us in designing training data to maximize the diversity of tasks covered and to combine different tasks whenever possible, rather than solely focusing on the target task for testing.


Uncertainty-Aware Explainable Federated Learning

arXiv.org Artificial Intelligence

Federated Learning (FL) is a collaborative machine learning paradigm for enhancing data privacy preservation. Its privacy-preserving nature complicates the explanation of the decision-making processes and the evaluation of the reliability of the generated explanations. In this paper, we propose the Uncertainty-aware eXplainable Federated Learning (UncertainXFL) to address these challenges. It generates explanations for decision-making processes under FL settings and provides information regarding the uncertainty of these explanations. UncertainXFL is the first framework to explicitly offer uncertainty evaluation for explanations within the FL context. Explanatory information is initially generated by the FL clients and then aggregated by the server in a comprehensive and conflict-free manner during FL training. The quality of the explanations, including the uncertainty score and tested validity, guides the FL training process by prioritizing clients with the most reliable explanations through higher weights during model aggregation. Extensive experimental evaluation results demonstrate that UncertainXFL achieves superior model accuracy and explanation accuracy, surpassing the current state-of-the-art model that does not incorporate uncertainty information by 2.71% and 1.77%, respectively. By integrating and quantifying uncertainty in the data into the explanation process, UncertainXFL not only clearly presents the explanation alongside its uncertainty, but also leverages this uncertainty to guide the FL training process, thereby enhancing the robustness and reliability of the resulting models.


Can Textual Gradient Work in Federated Learning?

arXiv.org Artificial Intelligence

Recent studies highlight the promise of LLM-based prompt optimization, especially with TextGrad, which automates differentiation'' via texts and backpropagates textual feedback. This approach facilitates training in various real-world applications that do not support numerical gradient propagation or loss calculation. In this paper, we systematically explore the potential and challenges of incorporating textual gradient into Federated Learning (FL). Our contributions are fourfold. Firstly, we introduce a novel FL paradigm, Federated Textual Gradient (FedTextGrad), that allows clients to upload locally optimized prompts derived from textual gradients, while the server aggregates the received prompts. Unlike traditional FL frameworks, which are designed for numerical aggregation, FedTextGrad is specifically tailored for handling textual data, expanding the applicability of FL to a broader range of problems that lack well-defined numerical loss functions. Secondly, building on this design, we conduct extensive experiments to explore the feasibility of FedTextGrad. Our findings highlight the importance of properly tuning key factors (e.g., local steps) in FL training. Thirdly, we highlight a major challenge in FedTextGrad aggregation: retaining essential information from distributed prompt updates. Last but not least, in response to this issue, we improve the vanilla variant of FedTextGrad by providing actionable guidance to the LLM when summarizing client prompts by leveraging the Uniform Information Density principle. Through this principled study, we enable the adoption of textual gradients in FL for optimizing LLMs, identify important issues, and pinpoint future directions, thereby opening up a new research area that warrants further investigation.


Ten Challenging Problems in Federated Foundation Models

arXiv.org Artificial Intelligence

Federated Foundation Models (FedFMs) represent a distributed learning paradigm that fuses general competences of foundation models as well as privacy-preserving capabilities of federated learning. This combination allows the large foundation models and the small local domain models at the remote clients to learn from each other in a teacher-student learning setting. This paper provides a comprehensive summary of the ten challenging problems inherent in FedFMs, encompassing foundational theory, utilization of private data, continual learning, unlearning, Non-IID and graph data, bidirectional knowledge transfer, incentive mechanism design, game mechanism design, model watermarking, and efficiency. The ten challenging problems manifest in five pivotal aspects: ``Foundational Theory," which aims to establish a coherent and unifying theoretical framework for FedFMs. ``Data," addressing the difficulties in leveraging domain-specific knowledge from private data while maintaining privacy; ``Heterogeneity," examining variations in data, model, and computational resources across clients; ``Security and Privacy," focusing on defenses against malicious attacks and model theft; and ``Efficiency," highlighting the need for improvements in training, communication, and parameter efficiency. For each problem, we offer a clear mathematical definition on the objective function, analyze existing methods, and discuss the key challenges and potential solutions. This in-depth exploration aims to advance the theoretical foundations of FedFMs, guide practical implementations, and inspire future research to overcome these obstacles, thereby enabling the robust, efficient, and privacy-preserving FedFMs in various real-world applications.


Sample Weight Averaging for Stable Prediction

arXiv.org Artificial Intelligence

The challenge of Out-of-Distribution (OOD) generalization poses a foundational concern for the application of machine learning algorithms to risk-sensitive areas. Inspired by traditional importance weighting and propensity weighting methods, prior approaches employ an independence-based sample reweighting procedure. They aim at decorrelating covariates to counteract the bias introduced by spurious correlations between unstable variables and the outcome, thus enhancing generalization and fulfilling stable prediction under covariate shift. Nonetheless, these methods are prone to experiencing an inflation of variance, primarily attributable to the reduced efficacy in utilizing training samples during the reweighting process. Existing remedies necessitate either environmental labels or substantially higher time costs along with additional assumptions and supervised information. To mitigate this issue, we propose SAmple Weight Averaging (SAWA), a simple yet efficacious strategy that can be universally integrated into various sample reweighting algorithms to decrease the variance and coefficient estimation error, thus boosting the covariate-shift generalization and achieving stable prediction across different environments. We prove its rationality and benefits theoretically. Experiments across synthetic datasets and real-world datasets consistently underscore its superiority against covariate shift.


Error Slice Discovery via Manifold Compactness

arXiv.org Artificial Intelligence

Despite the great performance of deep learning models in many areas, they still make mistakes and underperform on certain subsets of data, i.e. error slices. Given a trained model, it is important to identify its semantically coherent error slices that are easy to interpret, which is referred to as the error slice discovery problem. However, there is no proper metric of slice coherence without relying on extra information like predefined slice labels. Current evaluation of slice coherence requires access to predefined slices formulated by metadata like attributes or subclasses. Its validity heavily relies on the quality and abundance of metadata, where some possible patterns could be ignored. Besides, current algorithms cannot directly incorporate the constraint of coherence into their optimization objective due to the absence of an explicit coherence metric, which could potentially hinder their effectiveness. In this paper, we propose manifold compactness, a coherence metric without reliance on extra information by incorporating the data geometry property into its design, and experiments on typical datasets empirically validate the rationality of the metric. Then we develop Manifold Compactness based error Slice Discovery (MCSD), a novel algorithm that directly treats risk and coherence as the optimization objective, and is flexible to be applied to models of various tasks. Extensive experiments on the benchmark and case studies on other typical datasets demonstrate the superiority of MCSD.


Learning from "Silly" Questions Improves Large Language Models, But Only Slightly

arXiv.org Artificial Intelligence

Constructing high-quality Supervised Fine-Tuning (SFT) datasets is critical for the training of large language models (LLMs). Recent studies have shown that using data from a specific source, Ruozhiba, a Chinese website where users ask "silly" questions to better understand certain topics, can lead to better fine-tuning performance. This paper aims to explore some hidden factors: the potential interpretations of its success and a large-scale evaluation of the performance. First, we leverage GPT-4 to analyze the successful cases of Ruozhiba questions from the perspective of education, psychology, and cognitive science, deriving a set of explanatory rules. Then, we construct fine-tuning datasets by applying these rules to the MMLU training set. Surprisingly, our results indicate that rules can significantly improve model performance in certain tasks, while potentially diminishing performance on others. For example, SFT data generated following the "Counterintuitive Thinking" rule can achieve approximately a 5% improvement on the "Global Facts" task, whereas the "Blurring the Conceptual Boundaries" rule leads to a performance drop of 6.14% on the "Econometrics" task. In addition, for specific tasks, different rules tend to have a consistent impact on model performance. This suggests that the differences between the extracted rules are not as significant, and the effectiveness of the rules is relatively consistent across tasks. Our research highlights the importance of considering task diversity and rule applicability when constructing SFT datasets to achieve more comprehensive performance improvements.


Double Machine Learning for Adaptive Causal Representation in High-Dimensional Data

arXiv.org Machine Learning

Adaptive causal representation learning from observational data is presented, integrated with an efficient sample splitting technique within the semiparametric estimating equation framework. The support points sample splitting (SPSS), a subsampling method based on energy distance, is employed for efficient double machine learning (DML) in causal inference. The support points are selected and split as optimal representative points of the full raw data in a random sample, in contrast to the traditional random splitting, and providing an optimal sub-representation of the underlying data generating distribution. They offer the best representation of a full big dataset, whereas the unit structural information of the underlying distribution via the traditional random data splitting is most likely not preserved. Three machine learning estimators were adopted for causal inference, support vector machine (SVM), deep learning (DL), and a hybrid super learner (SL) with deep learning (SDL), using SPSS. A comparative study is conducted between the proposed SVM, DL, and SDL representations using SPSS, and the benchmark results from Chernozhukov et al. (2018), which employed random forest, neural network, and regression trees with a random k-fold cross-fitting technique on the 401(k)-pension plan real data. The simulations show that DL with SPSS and the hybrid methods of DL and SL with SPSS outperform SVM with SPSS in terms of computational efficiency and the estimation quality, respectively.


Benchmarking Data Heterogeneity Evaluation Approaches for Personalized Federated Learning

arXiv.org Artificial Intelligence

There is growing research interest in measuring the statistical heterogeneity of clients' local datasets. Such measurements are used to estimate the suitability for collaborative training of personalized federated learning (PFL) models. Currently, these research endeavors are taking place in silos and there is a lack of a unified benchmark to provide a fair and convenient comparison among various approaches in common settings. We aim to bridge this important gap in this paper. The proposed benchmarking framework currently includes six representative approaches. Extensive experiments have been conducted to compare these approaches under five standard non-IID FL settings, providing much needed insights into which approaches are advantageous under which settings. The proposed framework offers useful guidance on the suitability of various data divergence measures in FL systems. It is beneficial for keeping related research activities on the right track in terms of: (i) designing PFL schemes, (ii) selecting appropriate data heterogeneity evaluation approaches for specific FL application scenarios, and (iii) addressing fairness issues in collaborative model training.


Free-Rider and Conflict Aware Collaboration Formation for Cross-Silo Federated Learning

arXiv.org Artificial Intelligence

Federated learning (FL) is a machine learning paradigm that allows multiple FL participants (FL-PTs) to collaborate on training models without sharing private data. Due to data heterogeneity, negative transfer may occur in the FL training process. This necessitates FL-PT selection based on their data complementarity. In cross-silo FL, organizations that engage in business activities are key sources of FL-PTs. The resulting FL ecosystem has two features: (i) self-interest, and (ii) competition among FL-PTs. This requires the desirable FL-PT selection strategy to simultaneously mitigate the problems of free riders and conflicts of interest among competitors. To this end, we propose an optimal FL collaboration formation strategy -- FedEgoists -- which ensures that: (1) a FL-PT can benefit from FL if and only if it benefits the FL ecosystem, and (2) a FL-PT will not contribute to its competitors or their supporters. It provides an efficient clustering solution to group FL-PTs into coalitions, ensuring that within each coalition, FL-PTs share the same interest. We theoretically prove that the FL-PT coalitions formed are optimal since no coalitions can collaborate together to improve the utility of any of their members. Extensive experiments on widely adopted benchmark datasets demonstrate the effectiveness of FedEgoists compared to nine state-of-the-art baseline methods, and its ability to establish efficient collaborative networks in cross-silos FL with FL-PTs that engage in business activities.