Not enough data to create a plot.
Try a different view from the menu above.
Yoo, Jaejun
Understanding Flatness in Generative Models: Its Role and Benefits
Lee, Taehwan, Seo, Kyeongkook, Yoo, Jaejun, Yoon, Sung Whan
Flat minima, known to enhance generalization and robustness in supervised learning, remain largely unexplored in generative models. In this work, we systematically investigate the role of loss surface flatness in generative models, both theoretically and empirically, with a particular focus on diffusion models. We establish a theoretical claim that flatter minima improve robustness against perturbations in target prior distributions, leading to benefits such as reduced exposure bias -- where errors in noise estimation accumulate over iterations -- and significantly improved resilience to model quantization, preserving generative performance even under strong quantization constraints. We further observe that Sharpness-Aware Minimization (SAM), which explicitly controls the degree of flatness, effectively enhances flatness in diffusion models, whereas other well-known methods such as Stochastic Weight Averaging (SWA) and Exponential Moving Average (EMA), which promote flatness indirectly via ensembling, are less effective. Through extensive experiments on CIFAR-10, LSUN Tower, and FFHQ, we demonstrate that flat minima in diffusion models indeed improves not only generative performance but also robustness.
PRISM: Privacy-Preserving Improved Stochastic Masking for Federated Generative Models
Seo, Kyeongkook, Han, Dong-Jun, Yoo, Jaejun
Despite recent advancements in federated learning (FL), the integration of generative models into FL has been limited due to challenges such as high communication costs and unstable training in heterogeneous data environments. To address these issues, we propose PRISM, a FL framework tailored for generative models that ensures (i) stable performance in heterogeneous data distributions and (ii) resource efficiency in terms of communication cost and final model size. The key of our method is to search for an optimal stochastic binary mask for a random network rather than updating the model weights, identifying a sparse subnetwork with high generative performance; i.e., a ``strong lottery ticket''. By communicating binary masks in a stochastic manner, PRISM minimizes communication overhead. This approach, combined with the utilization of maximum mean discrepancy (MMD) loss and a mask-aware dynamic moving average aggregation method (MADA) on the server side, facilitates stable and strong generative capabilities by mitigating local divergence in FL scenarios. Moreover, thanks to its sparsifying characteristic, PRISM yields a lightweight model without extra pruning or quantization, making it ideal for environments such as edge devices. Experiments on MNIST, FMNIST, CelebA, and CIFAR10 demonstrate that PRISM outperforms existing methods, while maintaining privacy with minimal communication costs. PRISM is the first to successfully generate images under challenging non-IID and privacy-preserving FL environments on complex datasets, where previous methods have struggled.
BF-STVSR: B-Splines and Fourier-Best Friends for High Fidelity Spatial-Temporal Video Super-Resolution
Kim, Eunjin, Kim, Hyeonjin, Jin, Kyong Hwan, Yoo, Jaejun
Enhancing low-resolution, low-frame-rate videos to high-resolution, high-frame-rate quality is essential for a seamless user experience, motivating advancements in Continuous Spatial-Temporal Video Super Resolution (C-STVSR). While prior methods employ Implicit Neural Representation (INR) for continuous encoding, they often struggle to capture the complexity of video data, relying on simple coordinate concatenation and pre-trained optical flow network for motion representation. Interestingly, we find that adding position encoding, contrary to common observations, does not improve-and even degrade performance. This issue becomes particularly pronounced when combined with pre-trained optical flow networks, which can limit the model's flexibility. To address these issues, we propose BF-STVSR, a C-STVSR framework with two key modules tailored to better represent spatial and temporal characteristics of video: 1) B-spline Mapper for smooth temporal interpolation, and 2) Fourier Mapper for capturing dominant spatial frequencies. Our approach achieves state-of-the-art PSNR and SSIM performance, showing enhanced spatial details and natural temporal consistency.
Dynamic-Aware Spatio-temporal Representation Learning for Dynamic MRI Reconstruction
Baik, Dayoung, Yoo, Jaejun
Dynamic MRI reconstruction, one of inverse problems, has seen a surge by the use of deep learning techniques. Especially, the practical difficulty of obtaining ground truth data has led to the emergence of unsupervised learning approaches. A recent promising method among them is implicit neural representation (INR), which defines the data as a continuous function that maps coordinate values to the corresponding signal values. This allows for filling in missing information only with incomplete measurements and solving the inverse problem effectively. Nevertheless, previous works incorporating this method have faced drawbacks such as long optimization time and the need for extensive hyperparameter tuning. To address these issues, we propose Dynamic-Aware INR (DA-INR), an INR-based model for dynamic MRI reconstruction that captures the spatial and temporal continuity of dynamic MRI data in the image domain and explicitly incorporates the temporal redundancy of the data into the model structure. As a result, DA-INR outperforms other models in reconstruction quality even at extreme undersampling ratios while significantly reducing optimization time and requiring minimal hyperparameter tuning.
Singular Value Scaling: Efficient Generative Model Compression via Pruned Weights Refinement
Kim, Hyeonjin, Yoo, Jaejun
While pruning methods effectively maintain model performance without extra training costs, they often focus solely on preserving crucial connections, overlooking the impact of pruned weights on subsequent fine-tuning or distillation, leading to inefficiencies. Moreover, most compression techniques for generative models have been developed primarily for GANs, tailored to specific architectures like StyleGAN, and research into compressing Diffusion models has just begun. Even more, these methods are often applicable only to GANs or Diffusion models, highlighting the need for approaches that work across both model types. In this paper, we introduce Singular Value Scaling (SVS), a versatile technique for refining pruned weights, applicable to both model types. Our analysis reveals that pruned weights often exhibit dominant singular vectors, hindering fine-tuning efficiency and leading to suboptimal performance compared to random initialization. Our method enhances weight initialization by minimizing the disparities between singular values of pruned weights, thereby improving the fine-tuning process. This approach not only guides the compressed model toward superior solutions but also significantly speeds up fine-tuning. Extensive experiments on StyleGAN2, StyleGAN3 and DDPM demonstrate that SVS improves compression performance across model types without additional training costs. Our code is available at: https://github.com/LAIT-CVLab/Singular-Value-Scaling.
STREAM: Spatio-TempoRal Evaluation and Analysis Metric for Video Generative Models
Kim, Pum Jun, Kim, Seojun, Yoo, Jaejun
Image generative models have made significant progress in generating realistic and diverse images, supported by comprehensive guidance from various evaluation metrics. However, current video generative models struggle to generate even short video clips, with limited tools that provide insights for improvements. Current video evaluation metrics are simple adaptations of image metrics by switching the embeddings with video embedding networks, which may underestimate the unique characteristics of video. Our analysis reveals that the widely used Frechet Video Distance (FVD) has a stronger emphasis on the spatial aspect than the temporal naturalness of video and is inherently constrained by the input size of the embedding networks used, limiting it to 16 frames. Additionally, it demonstrates considerable instability and diverges from human evaluations. To address the limitations, we propose STREAM, a new video evaluation metric uniquely designed to independently evaluate spatial and temporal aspects. This feature allows comprehensive analysis and evaluation of video generative models from various perspectives, unconstrained by video length. We provide analytical and experimental evidence demonstrating that STREAM provides an effective evaluation tool for both visual and temporal quality of videos, offering insights into area of improvement for video generative models. To the best of our knowledge, STREAM is the first evaluation metric that can separately assess the temporal and spatial aspects of videos. Our code is available at https://github.com/pro2nit/STREAM.
Bridging the Domain Gap: A Simple Domain Matching Method for Reference-based Image Super-Resolution in Remote Sensing
Min, Jeongho, Lee, Yejun, Kim, Dongyoung, Yoo, Jaejun
Recently, reference-based image super-resolution (RefSR) has shown excellent performance in image super-resolution (SR) tasks. The main idea of RefSR is to utilize additional information from the reference (Ref) image to recover the high-frequency components in low-resolution (LR) images. By transferring relevant textures through feature matching, RefSR models outperform existing single image super-resolution (SISR) models. However, their performance significantly declines when a domain gap between Ref and LR images exists, which often occurs in real-world scenarios, such as satellite imaging. In this letter, we introduce a Domain Matching (DM) module that can be seamlessly integrated with existing RefSR models to enhance their performance in a plug-and-play manner. To the best of our knowledge, we are the first to explore Domain Matching-based RefSR in remote sensing image processing. Our analysis reveals that their domain gaps often occur in different satellites, and our model effectively addresses these challenges, whereas existing models struggle. Our experiments demonstrate that the proposed DM module improves SR performance both qualitatively and quantitatively for remote sensing super-resolution tasks.
TopP&R: Robust Support Estimation Approach for Evaluating Fidelity and Diversity in Generative Models
Kim, Pum Jun, Jang, Yoojin, Kim, Jisu, Yoo, Jaejun
We propose a robust and reliable evaluation metric for generative models called Topological Precision and Recall (TopP&R, pronounced "topper"), which systematically estimates supports by retaining only topologically and statistically significant features with a certain level of confidence. Existing metrics, such as Inception Score (IS), Frรฉchet Inception Distance (FID), and various Precision and Recall (P&R) variants, rely heavily on support estimates derived from sample features. However, the reliability of these estimates has been overlooked, even though the quality of the evaluation hinges entirely on their accuracy. In this paper, we demonstrate that current methods not only fail to accurately assess sample quality when support estimation is unreliable, but also yield inconsistent results. In contrast, TopP&R reliably evaluates the sample quality and ensures statistical consistency in its results. Our theoretical and experimental findings reveal that TopP&R provides a robust evaluation, accurately capturing the true trend of change in samples, even in the presence of outliers and non-independent and identically distributed (Non-IID) perturbations where other methods result in inaccurate support estimations. To our knowledge, TopP&R is the first evaluation metric specifically focused on the robust estimation of supports, offering statistical consistency under noise conditions.
RADIO: Reference-Agnostic Dubbing Video Synthesis
Lee, Dongyeun, Kim, Chaewon, Yu, Sangjoon, Yoo, Jaejun, Park, Gyeong-Moon
One of the most challenging problems in audio-driven talking head generation is achieving high-fidelity detail while ensuring precise synchronization. Given only a single reference image, extracting meaningful identity attributes becomes even more challenging, often causing the network to mirror the facial and lip structures too closely. To address these issues, we introduce RADIO, a framework engineered to yield high-quality dubbed videos regardless of the pose or expression in reference images. The key is to modulate the decoder layers using latent space composed of audio and reference features. Additionally, we incorporate ViT blocks into the decoder to emphasize high-fidelity details, especially in the lip region. Our experimental results demonstrate that RADIO displays high synchronization without the loss of fidelity. Especially in harsh scenarios where the reference frame deviates significantly from the ground truth, our method outperforms state-of-the-art methods, highlighting its robustness.
Efficient Storage of Fine-Tuned Models via Low-Rank Approximation of Weight Residuals
Ryu, Simo, Seo, Seunghyun, Yoo, Jaejun
In this paper, we present an efficient method for storing fine-tuned models by leveraging the low-rank properties of weight residuals. Our key observation is that weight residuals in large overparameterized models exhibit even stronger low-rank characteristics. Based on this insight, we propose Efficient Residual Encoding (ERE), a novel approach that achieves efficient storage of fine-tuned model weights by approximating the low-rank weight residuals. Furthermore, we analyze the robustness of weight residuals and push the limit of storage efficiency by utilizing additional quantization and layer-wise rank allocation. Our experimental results demonstrate that our method significantly reduces memory footprint while preserving performance in various tasks and modalities.