Yang, Diange
FASIONAD++ : Integrating High-Level Instruction and Information Bottleneck in FAt-Slow fusION Systems for Enhanced Safety in Autonomous Driving with Adaptive Feedback
Qian, Kangan, Luo, Ziang, Jiang, Sicong, Huang, Zilin, Miao, Jinyu, Ma, Zhikun, Zhu, Tianze, Li, Jiayin, He, Yangfan, Fu, Zheng, Shi, Yining, Wang, Boyue, Lin, Hezhe, Chen, Ziyu, Yu, Jiangbo, Jiao, Xinyu, Yang, Mengmeng, Jiang, Kun, Yang, Diange
Ensuring safe, comfortable, and efficient planning is crucial for autonomous driving systems. While end-to-end models trained on large datasets perform well in standard driving scenarios, they struggle with complex low-frequency events. Recent Large Language Models (LLMs) and Vision Language Models (VLMs) advancements offer enhanced reasoning but suffer from computational inefficiency. Inspired by the dual-process cognitive model "Thinking, Fast and Slow", we propose $\textbf{FASIONAD}$ -- a novel dual-system framework that synergizes a fast end-to-end planner with a VLM-based reasoning module. The fast system leverages end-to-end learning to achieve real-time trajectory generation in common scenarios, while the slow system activates through uncertainty estimation to perform contextual analysis and complex scenario resolution. Our architecture introduces three key innovations: (1) A dynamic switching mechanism enabling slow system intervention based on real-time uncertainty assessment; (2) An information bottleneck with high-level plan feedback that optimizes the slow system's guidance capability; (3) A bidirectional knowledge exchange where visual prompts enhance the slow system's reasoning while its feedback refines the fast planner's decision-making. To strengthen VLM reasoning, we develop a question-answering mechanism coupled with reward-instruct training strategy. In open-loop experiments, FASIONAD achieves a $6.7\%$ reduction in average $L2$ trajectory error and $28.1\%$ lower collision rate.
Advancing Autonomous Vehicle Intelligence: Deep Learning and Multimodal LLM for Traffic Sign Recognition and Robust Lane Detection
Sah, Chandan Kumar, Shaw, Ankit Kumar, Lian, Xiaoli, Baig, Arsalan Shahid, Wen, Tuopu, Jiang, Kun, Yang, Mengmeng, Yang, Diange
Autonomous vehicles (AVs) require reliable traffic sign recognition and robust lane detection capabilities to ensure safe navigation in complex and dynamic environments. This paper introduces an integrated approach combining advanced deep learning techniques and Multimodal Large Language Models (MLLMs) for comprehensive road perception. For traffic sign recognition, we systematically evaluate ResNet-50, YOLOv8, and RT-DETR, achieving state-of-the-art performance of 99.8% with ResNet-50, 98.0% accuracy with YOLOv8, and achieved 96.6% accuracy in RT-DETR despite its higher computational complexity. For lane detection, we propose a CNN-based segmentation method enhanced by polynomial curve fitting, which delivers high accuracy under favorable conditions. Furthermore, we introduce a lightweight, Multimodal, LLM-based framework that directly undergoes instruction tuning using small yet diverse datasets, eliminating the need for initial pretraining. This framework effectively handles various lane types, complex intersections, and merging zones, significantly enhancing lane detection reliability by reasoning under adverse conditions. Despite constraints in available training resources, our multimodal approach demonstrates advanced reasoning capabilities, achieving a Frame Overall Accuracy (FRM) of 53.87%, a Question Overall Accuracy (QNS) of 82.83%, lane detection accuracies of 99.6% in clear conditions and 93.0% at night, and robust performance in reasoning about lane invisibility due to rain (88.4%) or road degradation (95.6%). The proposed comprehensive framework markedly enhances AV perception reliability, thus contributing significantly to safer autonomous driving across diverse and challenging road scenarios.
Efficient End-to-end Visual Localization for Autonomous Driving with Decoupled BEV Neural Matching
Miao, Jinyu, Wen, Tuopu, Luo, Ziang, Qian, Kangan, Fu, Zheng, Wang, Yunlong, Jiang, Kun, Yang, Mengmeng, Huang, Jin, Zhong, Zhihua, Yang, Diange
-- Accurate localization plays an important role in high-level autonomous driving systems. Conventional map matching-based localization methods solve the poses by explicitly matching map elements with sensor observations, generally sensitive to perception noise, therefore requiring costly hyper-parameter tuning. In this paper, we propose an end-to-end localization neural network which directly estimates vehicle poses from surrounding images, without explicitly matching perception results with HD maps. T o ensure efficiency and inter-pretability, a decoupled BEV neural matching-based pose solver is proposed, which estimates poses in a differentiable sampling-based matching module. Moreover, the sampling space is hugely reduced by decoupling the feature representation affected by each DoF of poses. The experimental results demonstrate that the proposed network is capable of performing decimeter level localization with mean absolute errors of 0.19m, 0.13m and 0.39 Visual localization serves as a vital component in high-level Autonomous Driving (AD) systems due to its ability to estimate vehicle poses with an economical sensor suite. In recent decades, several works have achieved extraordinary success in terms of localization accuracy and robustness [1]. A plethora of scene maps has been developed in the domain of visual localization research, yielding varying degrees of pose estimation accuracy [1]. In conventional robotic systems, visual localization systems often employ geo-tagged frames [2], [3] and visual landmark maps [4].
Dynamically Local-Enhancement Planner for Large-Scale Autonomous Driving
Deng, Nanshan, Zhou, Weitao, Zhang, Bo, Wen, Junze, Jiang, Kun, Cao, Zhong, Yang, Diange
IEEE ROBOTICS AND AUTOMA TION LETTERS 1 Dynamically Local-Enhancement Planner for Large-Scale Autonomous Driving Nanshan Deng, Weitao Zhou, Bo Zhang, Junze Wen, Kun Jiang, Zhong Cao, Diange Y ang Abstract --Current autonomous vehicles operate primarily within limited regions, but there is increasing demand for broader applications. However, as models scale, their limited capacity becomes a significant challenge for adapting to novel scenarios. It is increasingly difficult to improve models for new situations using a single monolithic model. T o address this issue, we introduce the concept of dynamically enhancing a basic driving planner with local driving data, without permanently modifying the planner itself. This approach, termed the Dynamically Local-Enhancement (DLE) Planner, aims to improve the scalability of autonomous driving systems without significantly expanding the planner's size. Our approach introduces a position-varying Markov Decision Process formulation coupled with a graph neural network that extracts region-specific driving features from local observation data. The learned features describe the local behavior of the surrounding objects, which is then leveraged to enhance a basic reinforcement learning-based policy. We evaluated our approach in multiple scenarios and compared it with a one-for-all driving model. The results show that our method outperforms the baseline policy in both safety (collision rate) and average reward, while maintaining a lighter scale.
Residual Learning towards High-fidelity Vehicle Dynamics Modeling with Transformer
Miao, Jinyu, Yan, Rujun, Zhang, Bowei, Wen, Tuopu, Jiang, Kun, Yang, Mengmeng, Huang, Jin, Zhong, Zhihua, Yang, Diange
The vehicle dynamics model serves as a vital component of autonomous driving systems, as it describes the temporal changes in vehicle state. In a long period, researchers have made significant endeavors to accurately model vehicle dynamics. Traditional physics-based methods employ mathematical formulae to model vehicle dynamics, but they are unable to adequately describe complex vehicle systems due to the simplifications they entail. Recent advancements in deep learning-based methods have addressed this limitation by directly regressing vehicle dynamics. However, the performance and generalization capabilities still require further enhancement. In this letter, we address these problems by proposing a vehicle dynamics correction system that leverages deep neural networks to correct the state residuals of a physical model instead of directly estimating the states. This system greatly reduces the difficulty of network learning and thus improves the estimation accuracy of vehicle dynamics. Furthermore, we have developed a novel Transformer-based dynamics residual correction network, DyTR. This network implicitly represents state residuals as high-dimensional queries, and iteratively updates the estimated residuals by interacting with dynamics state features. The experiments in simulations demonstrate the proposed system works much better than physics model, and our proposed DyTR model achieves the best performances on dynamics state residual correction task, reducing the state prediction errors of a simple 3 DoF vehicle model by an average of 92.3% and 59.9% in two dataset, respectively.
PriorMotion: Generative Class-Agnostic Motion Prediction with Raster-Vector Motion Field Priors
Qian, Kangan, Jiao, Xinyu, Shi, Yining, Wang, Yunlong, Luo, Ziang, Fu, Zheng, Jiang, Kun, Yang, Diange
Reliable perception of spatial and motion information is crucial for safe autonomous navigation. Traditional approaches typically fall into two categories: object-centric and class-agnostic methods. While object-centric methods often struggle with missed detections, leading to inaccuracies in motion prediction, many class-agnostic methods focus heavily on encoder design, often overlooking important priors like rigidity and temporal consistency, leading to suboptimal performance, particularly with sparse LiDAR data at distant region. To address these issues, we propose $\textbf{PriorMotion}$, a generative framework that extracts rasterized and vectorized scene representations to model spatio-temporal priors. Our model comprises a BEV encoder, an Raster-Vector prior Encoder, and a Spatio-Temporal prior Generator, improving both spatial and temporal consistency in motion prediction. Additionally, we introduce a standardized evaluation protocol for class-agnostic motion prediction. Experiments on the nuScenes dataset show that PriorMotion achieves state-of-the-art performance, with further validation on advanced FMCW LiDAR confirming its robustness.
FASIONAD : FAst and Slow FusION Thinking Systems for Human-Like Autonomous Driving with Adaptive Feedback
Qian, Kangan, Ma, Zhikun, He, Yangfan, Luo, Ziang, Shi, Tianyu, Zhu, Tianze, Li, Jiayin, Wang, Jianhui, Chen, Ziyu, He, Xiao, Shi, Yining, Fu, Zheng, Jiao, Xinyu, Jiang, Kun, Yang, Diange, Matsumaru, Takafumi
Ensuring safe, comfortable, and efficient navigation is a critical goal for autonomous driving systems. While end-to-end models trained on large-scale datasets excel in common driving scenarios, they often struggle with rare, long-tail events. Recent progress in large language models (LLMs) has introduced enhanced reasoning capabilities, but their computational demands pose challenges for real-time decision-making and precise planning. This paper presents FASIONAD, a novel dual-system framework inspired by the cognitive model "Thinking, Fast and Slow." The fast system handles routine navigation tasks using rapid, data-driven path planning, while the slow system focuses on complex reasoning and decision-making in challenging or unfamiliar situations. A dynamic switching mechanism based on score distribution and feedback allows seamless transitions between the two systems. Visual prompts generated by the fast system enable human-like reasoning in the slow system, which provides high-quality feedback to enhance the fast system's decision-making. To evaluate FASIONAD, we introduce a new benchmark derived from the nuScenes dataset, specifically designed to differentiate fast and slow scenarios. FASIONAD achieves state-of-the-art performance on this benchmark, establishing a new standard for frameworks integrating fast and slow cognitive processes in autonomous driving. This approach paves the way for more adaptive, human-like autonomous driving systems.
A Survey on Monocular Re-Localization: From the Perspective of Scene Map Representation
Miao, Jinyu, Jiang, Kun, Wen, Tuopu, Wang, Yunlong, Jia, Peijing, Zhao, Xuhe, Cheng, Qian, Xiao, Zhongyang, Huang, Jin, Zhong, Zhihua, Yang, Diange
Monocular Re-Localization (MRL) is a critical component in autonomous applications, estimating 6 degree-of-freedom ego poses w.r.t. the scene map based on monocular images. In recent decades, significant progress has been made in the development of MRL techniques. Numerous algorithms have accomplished extraordinary success in terms of localization accuracy and robustness. In MRL, scene maps are represented in various forms, and they determine how MRL methods work and how MRL methods perform. However, to the best of our knowledge, existing surveys do not provide systematic reviews about the relationship between MRL solutions and their used scene map representation. This survey fills the gap by comprehensively reviewing MRL methods from such a perspective, promoting further research. 1) We commence by delving into the problem definition of MRL, exploring current challenges, and comparing ours with existing surveys. 2) Many well-known MRL methods are categorized and reviewed into five classes according to the representation forms of utilized map, i.e., geo-tagged frames, visual landmarks, point clouds, vectorized semantic map, and neural network-based map. 3) To quantitatively and fairly compare MRL methods with various map, we introduce some public datasets and provide the performances of some state-of-the-art MRL methods. The strengths and weakness of MRL methods with different map are analyzed. 4) We finally introduce some topics of interest in this field and give personal opinions. This survey can serve as a valuable referenced materials for MRL, and a continuously updated summary of this survey is publicly available to the community at: https://github.com/jinyummiao/map-in-mono-reloc.
Identify, Estimate and Bound the Uncertainty of Reinforcement Learning for Autonomous Driving
Zhou, Weitao, Cao, Zhong, Deng, Nanshan, Jiang, Kun, Yang, Diange
Deep reinforcement learning (DRL) has emerged as a promising approach for developing more intelligent autonomous vehicles (AVs). A typical DRL application on AVs is to train a neural network-based driving policy. However, the black-box nature of neural networks can result in unpredictable decision failures, making such AVs unreliable. To this end, this work proposes a method to identify and protect unreliable decisions of a DRL driving policy. The basic idea is to estimate and constrain the policy's performance uncertainty, which quantifies potential performance drop due to insufficient training data or network fitting errors. By constraining the uncertainty, the DRL model's performance is always greater than that of a baseline policy. The uncertainty caused by insufficient data is estimated by the bootstrapped method. Then, the uncertainty caused by the network fitting error is estimated using an ensemble network. Finally, a baseline policy is added as the performance lower bound to avoid potential decision failures. The overall framework is called uncertainty-bound reinforcement learning (UBRL). The proposed UBRL is evaluated on DRL policies with different amounts of training data, taking an unprotected left-turn driving case as an example. The result shows that the UBRL method can identify potentially unreliable decisions of DRL policy. The UBRL guarantees to outperform baseline policy even when the DRL policy is not well-trained and has high uncertainty. Meanwhile, the performance of UBRL improves with more training data. Such a method is valuable for the DRL application on real-road driving and provides a metric to evaluate a DRL policy.
Dynamically Conservative Self-Driving Planner for Long-Tail Cases
Zhou, Weitao, Cao, Zhong, Deng, Nanshan, Liu, Xiaoyu, Jiang, Kun, Yang, Diange
Self-driving vehicles (SDVs) are becoming reality but still suffer from "long-tail" challenges during natural driving: the SDVs will continually encounter rare, safety-critical cases that may not be included in the dataset they were trained. Some safety-assurance planners solve this problem by being conservative in all possible cases, which may significantly affect driving mobility. To this end, this work proposes a method to automatically adjust the conservative level according to each case's "long-tail" rate, named dynamically conservative planner (DCP). We first define the "long-tail" rate as an SDV's confidence to pass a driving case. The rate indicates the probability of safe-critical events and is estimated using the statistics bootstrapped method with historical data. Then, a reinforcement learning-based planner is designed to contain candidate policies with different conservative levels. The final policy is optimized based on the estimated "long-tail" rate. In this way, the DCP is designed to automatically adjust to be more conservative in low-confidence "long-tail" cases while keeping efficient otherwise. The DCP is evaluated in the CARLA simulator using driving cases with "long-tail" distributed training data. The results show that the DCP can accurately estimate the "long-tail" rate to identify potential risks. Based on the rate, the DCP automatically avoids potential collisions in "long-tail" cases using conservative decisions while not affecting the average velocity in other typical cases. Thus, the DCP is safer and more efficient than the baselines with fixed conservative levels, e.g., an always conservative planner. This work provides a technique to guarantee SDV's performance in unexpected driving cases without resorting to a global conservative setting, which contributes to solving the "long-tail" problem practically.