Xu, Kaidi
Defending against Backdoor Attack on Deep Neural Networks
Cheng, Hao, Xu, Kaidi, Liu, Sijia, Chen, Pin-Yu, Zhao, Pu, Lin, Xue
Although deep neural networks (DNNs) have achieved a great success in various computer vision tasks, it is recently found that they are vulnerable to adversarial attacks. In this paper, we focus on the so-called \textit{backdoor attack}, which injects a backdoor trigger to a small portion of training data (also known as data poisoning) such that the trained DNN induces misclassification while facing examples with this trigger. To be specific, we carefully study the effect of both real and synthetic backdoor attacks on the internal response of vanilla and backdoored DNNs through the lens of Gard-CAM. Moreover, we show that the backdoor attack induces a significant bias in neuron activation in terms of the $\ell_\infty$ norm of an activation map compared to its $\ell_1$ and $\ell_2$ norm. Spurred by our results, we propose the \textit{$\ell_\infty$-based neuron pruning} to remove the backdoor from the backdoored DNN. Experiments show that our method could effectively decrease the attack success rate, and also hold a high classification accuracy for clean images.
TruthPrInt: Mitigating LVLM Object Hallucination Via Latent Truthful-Guided Pre-Intervention
Duan, Jinhao, Kong, Fei, Cheng, Hao, Diffenderfer, James, Kailkhura, Bhavya, Sun, Lichao, Zhu, Xiaofeng, Shi, Xiaoshuang, Xu, Kaidi
Object Hallucination (OH) has been acknowledged as one of the major trustworthy challenges in Large Vision-Language Models (LVLMs). Recent advancements in Large Language Models (LLMs) indicate that internal states, such as hidden states, encode the "overall truthfulness" of generated responses. However, it remains under-explored how internal states in LVLMs function and whether they could serve as "per-token" hallucination indicators, which is essential for mitigating OH. In this paper, we first conduct an in-depth exploration of LVLM internal states in relation to OH issues and discover that (1) LVLM internal states are high-specificity per-token indicators of hallucination behaviors. Moreover, (2) different LVLMs encode universal patterns of hallucinations in common latent subspaces, indicating that there exist "generic truthful directions" shared by various LVLMs. Based on these discoveries, we propose Truthful-Guided Pre-Intervention (TruthPrInt) that first learns the truthful direction of LVLM decoding and then applies truthful-guided inference-time intervention during LVLM decoding. We further propose ComnHallu to enhance both cross-LVLM and cross-data hallucination detection transferability by constructing and aligning hallucination latent subspaces. We evaluate TruthPrInt in extensive experimental settings, including in-domain and out-of-domain scenarios, over popular LVLMs and OH benchmarks. Experimental results indicate that TruthPrInt significantly outperforms state-of-the-art methods. Codes will be available at https://github.com/jinhaoduan/TruthPrInt.
Exploring Typographic Visual Prompts Injection Threats in Cross-Modality Generation Models
Cheng, Hao, Xiao, Erjia, Wang, Yichi, Xu, Kaidi, Sun, Mengshu, Gu, Jindong, Xu, Renjing
Current Cross-Modality Generation Models (GMs) demonstrate remarkable capabilities in various generative tasks. Given the ubiquity and information richness of vision modality inputs in real-world scenarios, Cross-vision, encompassing Vision-Language Perception (VLP) and Image-to-Image (I2I), tasks have attracted significant attention. Large Vision Language Models (LVLMs) and I2I GMs are employed to handle VLP and I2I tasks, respectively. Previous research indicates that printing typographic words into input images significantly induces LVLMs and I2I GMs to generate disruptive outputs semantically related to those words. Additionally, visual prompts, as a more sophisticated form of typography, are also revealed to pose security risks to various applications of VLP tasks when injected into images. In this paper, we comprehensively investigate the performance impact induced by Typographic Visual Prompt Injection (TVPI) in various LVLMs and I2I GMs. To better observe performance modifications and characteristics of this threat, we also introduce the TVPI Dataset. Through extensive explorations, we deepen the understanding of the underlying causes of the TVPI threat in various GMs and offer valuable insights into its potential origins.
DynaCode: A Dynamic Complexity-Aware Code Benchmark for Evaluating Large Language Models in Code Generation
Hu, Wenhao, Duan, Jinhao, Wei, Chunchen, Zhang, Li, Zhang, Yue, Xu, Kaidi
The rapid advancement of large language models (LLMs) has significantly improved their performance in code generation tasks. However, existing code benchmarks remain static, consisting of fixed datasets with predefined problems. This makes them vulnerable to memorization during training, where LLMs recall specific test cases instead of generalizing to new problems, leading to data contamination and unreliable evaluation results. To address these issues, we introduce DynaCode, a dynamic, complexity-aware benchmark that overcomes the limitations of static datasets. DynaCode evaluates LLMs systematically using a complexity-aware metric, incorporating both code complexity and call-graph structures. DynaCode achieves large-scale diversity, generating up to 189 million unique nested code problems across four distinct levels of code complexity, referred to as units, and 16 types of call graphs. Results on 12 latest LLMs show an average performance drop of 16.8% to 45.7% compared to MBPP+, a static code generation benchmark, with performance progressively decreasing as complexity increases. This demonstrates DynaCode's ability to effectively differentiate LLMs. Additionally, by leveraging call graphs, we gain insights into LLM behavior, particularly their preference for handling subfunction interactions within nested code.
MedHallu: A Comprehensive Benchmark for Detecting Medical Hallucinations in Large Language Models
Pandit, Shrey, Xu, Jiawei, Hong, Junyuan, Wang, Zhangyang, Chen, Tianlong, Xu, Kaidi, Ding, Ying
Advancements in Large Language Models (LLMs) and their increasing use in medical question-answering necessitate rigorous evaluation of their reliability. A critical challenge lies in hallucination, where models generate plausible yet factually incorrect outputs. In the medical domain, this poses serious risks to patient safety and clinical decision-making. To address this, we introduce MedHallu, the first benchmark specifically designed for medical hallucination detection. MedHallu comprises 10,000 high-quality question-answer pairs derived from PubMedQA, with hallucinated answers systematically generated through a controlled pipeline. Our experiments show that state-of-the-art LLMs, including GPT-4o, Llama-3.1, and the medically fine-tuned UltraMedical, struggle with this binary hallucination detection task, with the best model achieving an F1 score as low as 0.625 for detecting "hard" category hallucinations. Using bidirectional entailment clustering, we show that harder-to-detect hallucinations are semantically closer to ground truth. Through experiments, we also show incorporating domain-specific knowledge and introducing a "not sure" category as one of the answer categories improves the precision and F1 scores by up to 38% relative to baselines.
Optimizing Robustness and Accuracy in Mixture of Experts: A Dual-Model Approach
Zhang, Xu, Xu, Kaidi, Hu, Ziqing, Wang, Ren
Mixture of Experts (MoE) have shown remarkable success in leveraging specialized expert networks for complex machine learning tasks. However, their susceptibility to adversarial attacks presents a critical challenge for deployment in robust applications. This paper addresses the critical question of how to incorporate robustness into MoEs while maintaining high natural accuracy. We begin by analyzing the vulnerability of MoE components, finding that expert networks are notably more susceptible to adversarial attacks than the router. Based on this insight, we propose a targeted robust training technique that integrates a novel loss function to enhance the adversarial robustness of MoE, requiring only the robustification of one additional expert without compromising training or inference efficiency. Building on this, we introduce a dual-model strategy that linearly combines a standard MoE model with our robustified MoE model using a smoothing parameter. This approach allows for flexible control over the robustness-accuracy trade-off. We further provide theoretical foundations by deriving certified robustness bounds for both the single MoE and the dual-model. To push the boundaries of robustness and accuracy, we propose a novel joint training strategy JTDMoE for the dual-model. This joint training enhances both robustness and accuracy beyond what is achievable with separate models. Experimental results on CIFAR-10 and TinyImageNet datasets using ResNet18 and Vision Transformer (ViT) architectures demonstrate the effectiveness of our proposed methods.
Symbiotic Cooperation for Web Agents: Harnessing Complementary Strengths of Large and Small LLMs
Zhang, Ruichen, Qiu, Mufan, Tan, Zhen, Zhang, Mohan, Lu, Vincent, Peng, Jie, Xu, Kaidi, Agudelo, Leandro Z., Qian, Peter, Chen, Tianlong
Web browsing agents powered by large language models (LLMs) have shown tremendous potential in automating complex web-based tasks. Existing approaches typically rely on large LLMs (e.g., GPT-4o) to explore web environments and generate trajectory data, which is then used either for demonstration retrieval (for large LLMs) or to distill small LLMs (e.g., Llama3) in a process that remains decoupled from the exploration. In this paper, we propose AgentSymbiotic, an iterative framework that couples data synthesis with task-performance, yielding a "symbiotic improvement" for both large and small LLMs. Our study uncovers a complementary dynamic between LLM types: while large LLMs excel at generating high-quality trajectories for distillation, the distilled small LLMs-owing to their distinct reasoning capabilities-often choose actions that diverge from those of their larger counterparts. This divergence drives the exploration of novel trajectories, thereby enriching the synthesized data. However, we also observe that the performance of small LLMs becomes a bottleneck in this iterative enhancement process. To address this, we propose two innovations in LLM distillation: a speculative data synthesis strategy that mitigates off-policy bias, and a multi-task learning approach designed to boost the reasoning capabilities of the student LLM. Furthermore, we introduce a Hybrid Mode for Privacy Preservation to address user privacy concerns. Evaluated on the WEBARENA benchmark, AgentSymbiotic achieves SOTA performance with both LLM types. Our best Large LLM agent reaches 52%, surpassing the previous best of 45%, while our 8B distilled model demonstrates a competitive 49%, exceeding the prior best of 28%. Code will be released upon acceptance.
GuideLLM: Exploring LLM-Guided Conversation with Applications in Autobiography Interviewing
Duan, Jinhao, Zhao, Xinyu, Zhang, Zhuoxuan, Ko, Eunhye, Boddy, Lily, Wang, Chenan, Li, Tianhao, Rasgon, Alexander, Hong, Junyuan, Lee, Min Kyung, Yuan, Chenxi, Long, Qi, Ding, Ying, Chen, Tianlong, Xu, Kaidi
Although Large Language Models (LLMs) succeed in human-guided conversations such as instruction following and question answering, the potential of LLM-guided conversations-where LLMs direct the discourse and steer the conversation's objectives-remains under-explored. In this study, we first characterize LLM-guided conversation into three fundamental components: (i) Goal Navigation; (ii) Context Management; (iii) Empathetic Engagement, and propose GuideLLM as an installation. We then implement an interviewing environment for the evaluation of LLM-guided conversation. Specifically, various topics are involved in this environment for comprehensive interviewing evaluation, resulting in around 1.4k turns of utterances, 184k tokens, and over 200 events mentioned during the interviewing for each chatbot evaluation. We compare GuideLLM with 6 state-of-the-art LLMs such as GPT-4o and Llama-3-70b-Instruct, from the perspective of interviewing quality, and autobiography generation quality. For automatic evaluation, we derive user proxies from multiple autobiographies and employ LLM-as-a-judge to score LLM behaviors. We further conduct a human-involved experiment by employing 45 human participants to chat with GuideLLM and baselines. We then collect human feedback, preferences, and ratings regarding the qualities of conversation and autobiography. Experimental results indicate that GuideLLM significantly outperforms baseline LLMs in automatic evaluation and achieves consistent leading performances in human ratings.
Tune In, Act Up: Exploring the Impact of Audio Modality-Specific Edits on Large Audio Language Models in Jailbreak
Xiao, Erjia, Cheng, Hao, Shao, Jing, Duan, Jinhao, Xu, Kaidi, Yang, Le, Gu, Jindong, Xu, Renjing
Large Language Models (LLMs) demonstrate remarkable zero-shot performance across various natural language processing tasks. The integration of multimodal encoders extends their capabilities, enabling the development of Multimodal Large Language Models that process vision, audio, and text. However, these capabilities also raise significant security concerns, as these models can be manipulated to generate harmful or inappropriate content through jailbreak. While extensive research explores the impact of modality-specific input edits on text-based LLMs and Large Vision-Language Models in jailbreak, the effects of audio-specific edits on Large Audio-Language Models (LALMs) remain underexplored. Hence, this paper addresses this gap by investigating how audio-specific edits influence LALMs inference regarding jailbreak. We introduce the Audio Editing Toolbox (AET), which enables audio-modality edits such as tone adjustment, word emphasis, and noise injection, and the Edited Audio Datasets (EADs), a comprehensive audio jailbreak benchmark. We also conduct extensive evaluations of state-of-the-art LALMs to assess their robustness under different audio edits. This work lays the groundwork for future explorations on audio-modality interactions in LALMs security.
Medical Unlearnable Examples: Securing Medical Data from Unauthorized Training via Sparsity-Aware Local Masking
Sun, Weixiang, Liu, Yixin, Yan, Zhiling, Xu, Kaidi, Sun, Lichao
The rapid expansion of AI in healthcare has led to a surge in medical data generation and storage, boosting medical AI development. However, fears of unauthorized use, like training commercial AI models, hinder researchers from sharing their valuable datasets. To encourage data sharing, one promising solution is to introduce imperceptible noise into the data. This method aims to safeguard the data against unauthorized training by inducing degradation in the generalization ability of the trained model. However, they are not effective and efficient when applied to medical data, mainly due to the ignorance of the sparse nature of medical images. To address this problem, we propose the Sparsity-Aware Local Masking (SALM) method, a novel approach that selectively perturbs significant pixel regions rather than the entire image as previously. This simple yet effective approach, by focusing on local areas, significantly narrows down the search space for disturbances and fully leverages the characteristics of sparsity. Our extensive experiments across various datasets and model architectures demonstrate that SALM effectively prevents unauthorized training of different models and outperforms previous SoTA data protection methods.