Goto

Collaborating Authors

 Williams, Brian C.


LaPlaSS: Latent Space Planning for Stochastic Systems

arXiv.org Artificial Intelligence

Autonomous mobile agents often operate in hazardous environments, necessitating an awareness of safety. These agents can have non-linear, stochastic dynamics that must be considered during planning to guarantee bounded risk. Most state of the art methods require closed-form dynamics to verify plan correctness and safety however modern robotic systems often have dynamics that are learned from data. Thus, there is a need to perform efficient trajectory planning with guarantees on risk for agents without known dynamics models. We propose a "generate-and-test" approach to risk-bounded planning in which a planner generates a candidate trajectory using an approximate linear dynamics model and a validator assesses the risk of the trajectory, computing additional safety constraints for the planner if the candidate does not satisfy the desired risk bound. To acquire the approximate model, we use a variational autoencoder to learn a latent linear dynamics model and encode the planning problem into the latent space to generate the candidate trajectory. The VAE also serves to sample trajectories around the candidate to use in the validator. We demonstrate that our algorithm, LaPlaSS, is able to generate trajectory plans with bounded risk for a real-world agent with learned dynamics and is an order of magnitude more efficient than the state of the art.


Adaptation and Communication in Human-Robot Teaming to Handle Discrepancies in Agents' Beliefs about Plans

arXiv.org Artificial Intelligence

When agents collaborate on a task, it is important that they have some shared mental model of the task routines -- the set of feasible plans towards achieving the goals. However, in reality, situations often arise that such a shared mental model cannot be guaranteed, such as in ad-hoc teams where agents may follow different conventions or when contingent constraints arise that only some agents are aware of. Previous work on human-robot teaming has assumed that the team has a set of shared routines, which breaks down in these situations. In this work, we leverage epistemic logic to enable agents to understand the discrepancy in each other's beliefs about feasible plans and dynamically plan their actions to adapt or communicate to resolve the discrepancy. We propose a formalism that extends conditional doxastic logic to describe knowledge bases in order to explicitly represent agents' nested beliefs on the feasible plans and state of execution. We provide an online execution algorithm based on Monte Carlo Tree Search for the agent to plan its action, including communication actions to explain the feasibility of plans, announce intent, and ask questions. Finally, we evaluate the success rate and scalability of the algorithm and show that our agent is better equipped to work in teams without the guarantee of a shared mental model.


Chance-constrained Static Schedules for Temporally Probabilistic Plans

Journal of Artificial Intelligence Research

Time management under uncertainty is essential to large scale projects. From space exploration to industrial production, there is a need to schedule and perform activities. given complex specifications on timing. In order to generate schedules that are robust to uncertainty in the duration of activities, prior work has focused on a problem framing that uses an interval-bounded uncertainty representation. However, such approaches are unable to take advantage of known probability distributions over duration. In this paper we concentrate on a probabilistic formulation of temporal problems with uncertain duration, called the probabilistic simple temporal problem. As distributions often have an unbounded range of outcomes, we consider chance-constrained solutions, with guarantees on the probability of meeting temporal constraints. By considering distributions over uncertain duration, we are able to use risk as a resource, reason over the relative likelihood of outcomes, and derive higher utility solutions. We first demonstrate our approach by encoding the problem as a convex program. We then develop a more efficient hybrid algorithm whose parent solver generates risk allocations and whose child solver generates schedules for a particular risk allocation. The child is made efficient by leveraging existing interval-bounded scheduling algorithms, while the parent is made efficient by extracting conflicts over risk allocations. We perform numerical experiments to show the advantages of reasoning over probabilistic uncertainty, by comparing the utility of schedules generated with risk allocation against those generated from reasoning over bounded uncertainty. We also empirically show that solution time is greatly reduced by incorporating conflict-directed risk allocation.


TIP: Task-Informed Motion Prediction for Intelligent Systems

arXiv.org Artificial Intelligence

Motion prediction is important for intelligent driving systems, providing the future distributions of road agent behaviors and supporting various decision making tasks. Existing motion predictors are often optimized and evaluated via task-agnostic measures based on prediction accuracy. Such measures fail to account for the use of prediction in downstream tasks, and could result in sub-optimal task performance. We propose a task-informed motion prediction framework that jointly reasons about prediction accuracy and task utility, to better support downstream tasks through its predictions. The task utility function does not require the full task information, but rather a specification of the utility of the task, resulting in predictors that serve a wide range of downstream tasks. We demonstrate our framework on two use cases of task utilities, in the context of autonomous driving and parallel autonomy, and show the advantage of task-informed predictors over task-agnostic ones on the Waymo Open Motion dataset.


Fast nonlinear risk assessment for autonomous vehicles using learned conditional probabilistic models of agent futures

arXiv.org Artificial Intelligence

This paper presents fast non-sampling based methods to assess the risk for trajectories of autonomous vehicles when probabilistic predictions of other agents' futures are generated by deep neural networks (DNNs). The presented methods address a wide range of representations for uncertain predictions including both Gaussian and non-Gaussian mixture models to predict both agent positions and control inputs conditioned on the scene contexts. We show that the problem of risk assessment when Gaussian mixture models (GMMs) of agent positions are learned can be solved rapidly to arbitrary levels of accuracy with existing numerical methods. To address the problem of risk assessment for non-Gaussian mixture models of agent position, we propose finding upper bounds on risk using nonlinear Chebyshev's Inequality and sums-of-squares (SOS) programming; they are both of interest as the former is much faster while the latter can be arbitrarily tight. These approaches only require higher order statistical moments of agent positions to determine upper bounds on risk. To perform risk assessment when models are learned for agent control inputs as opposed to positions, we propagate the moments of uncertain control inputs through the nonlinear motion dynamics to obtain the exact moments of uncertain position over the planning horizon. To this end, we construct deterministic linear dynamical systems that govern the exact time evolution of the moments of uncertain position in the presence of uncertain control inputs. The presented methods are demonstrated on realistic predictions from DNNs trained on the Argoverse and CARLA datasets and are shown to be effective for rapidly assessing the probability of low probability events.


Generalized Conflict-directed Search for Optimal Ordering Problems

arXiv.org Artificial Intelligence

Solving planning and scheduling problems for multiple tasks with highly coupled state and temporal constraints is notoriously challenging. An appealing approach to effectively decouple the problem is to judiciously order the events such that decisions can be made over sequences of tasks. As many problems encountered in practice are over-constrained, we must instead find relaxed solutions in which certain requirements are dropped. This motivates a formulation of optimality with respect to the costs of relaxing constraints and the problem of finding an optimal ordering under which this relaxing cost is minimum. In this paper, we present Generalized Conflict-directed Ordering (GCDO), a branch-and-bound ordering method that generates an optimal total order of events by leveraging the generalized conflicts of both inconsistency and suboptimality from sub-solvers for cost estimation and solution space pruning. Due to its ability to reason over generalized conflicts, GCDO is much more efficient in finding high-quality total orders than the previous conflict-directed approach CDITO. We demonstrate this by benchmarking on temporal network configuration problems, which involves managing networks over time and makes necessary tradeoffs between network flows against CDITO and Mixed Integer-Linear Programing (MILP). Our algorithm is able to solve two orders of magnitude more benchmark problems to optimality and twice the problems compared to CDITO and MILP within a runtime limit, respectively.


Helpfulness as a Key Metric of Human-Robot Collaboration

arXiv.org Artificial Intelligence

As robotic teammates become more common in society, people will assess the robots' roles in their interactions along many dimensions. One such dimension is effectiveness: people will ask whether their robotic partners are trustworthy and effective collaborators. This begs a crucial question: how can we quantitatively measure the helpfulness of a robotic partner for a given task at hand? This paper seeks to answer this question with regards to the interactive robot's decision making. We describe a clear, concise, and task-oriented metric applicable to many different planning and execution paradigms. The proposed helpfulness metric is fundamental to assessing the benefit that a partner has on a team for a given task. In this paper, we define helpfulness, illustrate it on concrete examples from a variety of domains, discuss its properties and ramifications for planning interactions with humans, and present preliminary results.


Online Risk-Bounded Motion Planning for Autonomous Vehicles in Dynamic Environments

arXiv.org Artificial Intelligence

A crucial challenge to efficient and robust motion planning for autonomous vehicles is understanding the intentions of the surrounding agents. Ignoring the intentions of the other agents in dynamic environments can lead to risky or over-conservative plans. In this work, we model the motion planning problem as a partially observable Markov decision process (POMDP) and propose an online system that combines an intent recognition algorithm and a POMDP solver to generate risk-bounded plans for the ego vehicle navigating with a number of dynamic agent vehicles. The intent recognition algorithm predicts the probabilistic hybrid motion states of each agent vehicle over a finite horizon using Bayesian filtering and a library of pre-learned maneuver motion models. We update the POMDP model with the intent recognition results in real time and solve it using a heuristic search algorithm which produces policies with upper-bound guarantees on the probability of near colliding with other dynamic agents. We demonstrate that our system is able to generate better motion plans in terms of efficiency and safety in a number of challenging environments including unprotected intersection left turns and lane changes as compared to the baseline methods.


Uncertainty-Aware Driver Trajectory Prediction at Urban Intersections

arXiv.org Artificial Intelligence

Predicting the motion of a driver's vehicle is crucial for advanced driving systems, enabling detection of potential risks towards shared control between the driver and automation systems. In this paper, we propose a variational neural network approach that predicts future driver trajectory distributions for the vehicle based on multiple sensors. Our predictor generates both a conditional variational distribution of future trajectories, as well as a confidence estimate for different time horizons. Our approach allows us to handle inherently uncertain situations, and reason about information gain from each input, as well as combine our model with additional predictors, creating a mixture of experts. We show how to augment the variational predictor with a physics-based predictor, and based on their confidence estimations, improve overall system performance. The resulting combined model is aware of the uncertainty associated with its predictions, which can help the vehicle autonomy to make decisions with more confidence. The model is validated on real-world urban driving data collected in multiple locations. This validation demonstrates that our approach improves the prediction error of a physics-based model by 25% while successfully identifying the uncertain cases with 82% accuracy.


RADMPC: A Fast Decentralized Approach for Chance-Constrained Multi-Vehicle Path-Planning

arXiv.org Artificial Intelligence

Robust multi-vehicle path-planning is important for ensuring the safety of multi-vehicle systems in applications like transportation, search and rescue, and robotic exploration. Chance-constrained methods like Iterative Risk Allocation (IRA)(Ono and Williams 2008) have been developed for situations where environmental disturbances are unbounded. However, chance-constrained methods for the multi-vehicle case generally use centralized strategies where the vehicle set is planned with couplings between all vehicle pairs. This approach is intractable as fleet size increases because computation time is exponential with respect to the number of vehicles being planned over due to a polynomial increase in coupling constraints between vehicle pairs. We present a faster approach for chance-constrained multi-vehicle path-planning that relies upon a decentralized path-planning method called Risk-A ware Decentralized Model Predictive Control (RADMPC) to rapidly approximate a centralized IRA approach. The RADMPC approximation is evaluated for vehicle interactions to determine the vehicle sets that should be planned in a coupled manner. Applying IRA to the smaller vehicle sets determined from the RADMPC approximation rapidly plans safe paths for the entire fleet. A Monte Carlo simulation analysis demonstrates the correctness of our approach and a significant improvement in computation time compared to a centralized IRA approach.