Goto

Collaborating Authors

 Wang, Tianyi


MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention

arXiv.org Artificial Intelligence

Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease. Multi-modal self-supervised learning has demonstrated remarkable potential in learning pathological representations by integrating diverse data sources. Conventional multi-modal integration methods primarily emphasize modality alignment, while paying insufficient attention to retaining the modality-specific structures. However, unlike conventional scenarios where multi-modal inputs share highly overlapping features, histopathology and transcriptomics exhibit pronounced heterogeneity, offering orthogonal yet complementary insights. Histopathology provides morphological and spatial context, elucidating tissue architecture and cellular topology, whereas transcriptomics delineates molecular signatures through gene expression patterns. This inherent disparity introduces a major challenge in aligning them while maintaining modality-specific fidelity. To address these challenges, we present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention. MIRROR employs dedicated encoders to extract comprehensive features for each modality, which is further complemented by a modality alignment module to achieve seamless integration between phenotype patterns and molecular profiles. Furthermore, a modality retention module safeguards unique attributes from each modality, while a style clustering module mitigates redundancy and enhances disease-relevant information by modeling and aligning consistent pathological signatures within a clustering space. Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance, demonstrating its effectiveness in constructing comprehensive oncological feature representations and benefiting the cancer diagnosis.


RAD: Retrieval-Augmented Decision-Making of Meta-Actions with Vision-Language Models in Autonomous Driving

arXiv.org Artificial Intelligence

Accurately understanding and deciding high-level meta-actions is essential for ensuring reliable and safe autonomous driving systems. While vision-language models (VLMs) have shown significant potential in various autonomous driving tasks, they often suffer from limitations such as inadequate spatial perception and hallucination, reducing their effectiveness in complex autonomous driving scenarios. To address these challenges, we propose a retrieval-augmented decision-making (RAD) framework, a novel architecture designed to enhance VLMs' capabilities to reliably generate meta-actions in autonomous driving scenes. RAD leverages a retrieval-augmented generation (RAG) pipeline to dynamically improve decision accuracy through a three-stage process consisting of the embedding flow, retrieving flow, and generating flow. Additionally, we fine-tune VLMs on a specifically curated dataset derived from the NuScenes dataset to enhance their spatial perception and bird's-eye view image comprehension capabilities. Extensive experimental evaluations on the curated NuScenes-based dataset demonstrate that RAD outperforms baseline methods across key evaluation metrics, including match accuracy, and F1 score, and self-defined overall score, highlighting its effectiveness in improving meta-action decision-making for autonomous driving tasks.


A Cascading Cooperative Multi-agent Framework for On-ramp Merging Control Integrating Large Language Models

arXiv.org Artificial Intelligence

Traditional Reinforcement Learning (RL) suffers from replicating human-like behaviors, generalizing effectively in multi-agent scenarios, and overcoming inherent interpretability issues.These tasks are compounded when deep environment understanding, agent coordination and dynamic optimization are required. While Large Language Model (LLM) enhanced methods have shown promise in generalization and interoperability, they often neglect necessary multi-agent coordination. Therefore, we introduce the Cascading Cooperative Multi-agent (CCMA) framework, integrating RL for individual interactions, a fine-tuned LLM for regional cooperation, a reward function for global optimization, and the Retrieval-augmented Generation mechanism to dynamically optimize decision-making across complex driving scenarios. Our experiments demonstrate that the CCMA outperforms existing RL methods, demonstrating significant improvements in both micro and macro-level performance in complex driving environments.


Damper-B-PINN: Damper Characteristics-Based Bayesian Physics-Informed Neural Network for Vehicle State Estimation

arXiv.org Artificial Intelligence

State estimation for Multi-Input Multi-Output (MIMO) systems with noise, such as vehicle chassis systems, presents a significant challenge due to the imperfect and complex relationship between inputs and outputs. To solve this problem, we design a Damper characteristics-based Bayesian Physics-Informed Neural Network (Damper-B-PINN). First, we introduce a neuron forward process inspired by the mechanical properties of dampers, which limits abrupt jumps in neuron values between epochs while maintaining search capability. Additionally, we apply an optimized Bayesian dropout layer to the MIMO system to enhance robustness against noise and prevent non-convergence issues. Physical information is incorporated into the loss function to serve as a physical prior for the neural network. The effectiveness of our Damper-B-PINN architecture is then validated across ten datasets and fourteen vehicle types, demonstrating superior accuracy, computational efficiency, and convergence in vehicle state estimation (i.e., dynamic wheel load) compared to other state-of-the-art benchmarks.


Characteristics Analysis of Autonomous Vehicle Pre-crash Scenarios

arXiv.org Artificial Intelligence

To date, hundreds of crashes have occurred in open road testing of automated vehicles (AVs), highlighting the need for improving AV reliability and safety. Pre-crash scenario typology classifies crashes based on vehicle dynamics and kinematics features. Building on this, characteristics analysis can identify similar features under comparable crashes, offering a more effective reflection of general crash patterns and providing more targeted recommendations for enhancing AV performance. However, current studies primarily concentrated on crashes among conventional human-driven vehicles, leaving a gap in research dedicated to in-depth AV crash analyses. In this paper, we analyzed the latest California AV collision reports and used the newly revised pre-crash scenario typology to identify pre-crash scenarios. We proposed a set of mapping rules for automatically extracting these AV pre-crash scenarios, successfully identifying 24 types with a 98.1% accuracy rate, and obtaining two key scenarios of AV crashes (i.e., rear-end scenarios and intersection scenarios) through detailed analysis. Association analyses of rear-end scenarios showed that the significant environmental influencing factors were traffic control type, location type, light, etc. For intersection scenarios prone to severe crashes with detailed descriptions, we employed causal analyses to obtain the significant causal factors: habitual violations and expectations of certain behavior. Optimization recommendations were then formulated, addressing both governmental oversight and AV manufacturers' potential improvements. The findings of this paper could guide government authorities to develop related regulations, help manufacturers design AV test scenarios, and identify potential shortcomings in control algorithms specific to various real-world scenarios, thereby optimizing AV systems effectively.


Less or More: Towards Glanceable Explanations for LLM Recommendations Using Ultra-Small Devices

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have shown remarkable potential in recommending everyday actions as personal AI assistants, while Explainable AI (XAI) techniques are being increasingly utilized to help users understand why a recommendation is given. Personal AI assistants today are often located on ultra-small devices such as smartwatches, which have limited screen space. The verbosity of LLM-generated explanations, however, makes it challenging to deliver glanceable LLM explanations on such ultra-small devices. To address this, we explored 1) spatially structuring an LLM's explanation text using defined contextual components during prompting and 2) presenting temporally adaptive explanations to users based on confidence levels. We conducted a user study to understand how these approaches impacted user experiences when interacting with LLM recommendations and explanations on ultra-small devices. The results showed that structured explanations reduced users' time to action and cognitive load when reading an explanation. Always-on structured explanations increased users' acceptance of AI recommendations. However, users were less satisfied with structured explanations compared to unstructured ones due to their lack of sufficient, readable details. Additionally, adaptively presenting structured explanations was less effective at improving user perceptions of the AI compared to the always-on structured explanations. Together with users' interview feedback, the results led to design implications to be mindful of when personalizing the content and timing of LLM explanations that are displayed on ultra-small devices.


NTIRE 2024 Challenge on Short-form UGC Video Quality Assessment: Methods and Results

arXiv.org Artificial Intelligence

This paper reviews the NTIRE 2024 Challenge on Shortform UGC Video Quality Assessment (S-UGC VQA), where various excellent solutions are submitted and evaluated on the collected dataset KVQ from popular short-form video platform, i.e., Kuaishou/Kwai Platform. The KVQ database is divided into three parts, including 2926 videos for training, 420 videos for validation, and 854 videos for testing. The purpose is to build new benchmarks and advance the development of S-UGC VQA. The competition had 200 participants and 13 teams submitted valid solutions for the final testing phase. The proposed solutions achieved state-of-the-art performances for S-UGC VQA. The project can be found at https://github.com/lixinustc/KVQChallenge-CVPR-NTIRE2024.


Snapshot Reinforcement Learning: Leveraging Prior Trajectories for Efficiency

arXiv.org Artificial Intelligence

Deep reinforcement learning (DRL) algorithms require substantial samples and computational resources to achieve higher performance, which restricts their practical application and poses challenges for further development. Given the constraint of limited resources, it is essential to leverage existing computational work (e.g., learned policies, samples) to enhance sample efficiency and reduce the computational resource consumption of DRL algorithms. Previous works to leverage existing computational work require intrusive modifications to existing algorithms and models, designed specifically for specific algorithms, lacking flexibility and universality. In this paper, we present the Snapshot Reinforcement Learning (SnapshotRL) framework, which enhances sample efficiency by simply altering environments, without making any modifications to algorithms and models. By allowing student agents to choose states in teacher trajectories as the initial state to sample, SnapshotRL can effectively utilize teacher trajectories to assist student agents in training, allowing student agents to explore a larger state space at the early training phase. We propose a simple and effective SnapshotRL baseline algorithm, S3RL, which integrates well with existing DRL algorithms. Our experiments demonstrate that integrating S3RL with TD3, SAC, and PPO algorithms on the MuJoCo benchmark significantly improves sample efficiency and average return, without extra samples and additional computational resources.


Diffusion Facial Forgery Detection

arXiv.org Artificial Intelligence

Detecting diffusion-generated images has recently grown into an emerging research area. Existing diffusion-based datasets predominantly focus on general image generation. However, facial forgeries, which pose a more severe social risk, have remained less explored thus far. To address this gap, this paper introduces DiFF, a comprehensive dataset dedicated to face-focused diffusion-generated images. DiFF comprises over 500,000 images that are synthesized using thirteen distinct generation methods under four conditions. In particular, this dataset leverages 30,000 carefully collected textual and visual prompts, ensuring the synthesis of images with both high fidelity and semantic consistency. We conduct extensive experiments on the DiFF dataset via a human test and several representative forgery detection methods. The results demonstrate that the binary detection accuracy of both human observers and automated detectors often falls below 30%, shedding light on the challenges in detecting diffusion-generated facial forgeries. Furthermore, we propose an edge graph regularization approach to effectively enhance the generalization capability of existing detectors.


Metalearning generalizable dynamics from trajectories

arXiv.org Artificial Intelligence

We present the interpretable meta neural ordinary differential equation (iMODE) method to rapidly learn generalizable (i.e., not parameter-specific) dynamics from trajectories of multiple dynamical systems that vary in their physical parameters. The iMODE method learns meta-knowledge, the functional variations of the force field of dynamical system instances without knowing the physical parameters, by adopting a bi-level optimization framework: an outer level capturing the common force field form among studied dynamical system instances and an inner level adapting to individual system instances. A priori physical knowledge can be conveniently embedded in the neural network architecture as inductive bias, such as conservative force field and Euclidean symmetry. With the learned meta-knowledge, iMODE can model an unseen system within seconds, and inversely reveal knowledge on the physical parameters of a system, or as a Neural Gauge to "measure" the physical parameters of an unseen system with observed trajectories. We test the validity of the iMODE method on bistable, double pendulum, Van der Pol, Slinky, and reaction-diffusion systems.