Goto

Collaborating Authors

 Wang, Shiqiang


Communication-Efficient Device Scheduling for Federated Learning Using Lyapunov Optimization

arXiv.org Machine Learning

Federated learning (FL) is a useful tool that enables the training of machine learning models over distributed data without having to collect data centrally. When deploying FL in constrained wireless environments, however, intermittent connectivity of devices, heterogeneous connection quality, and non-i.i.d. data can severely slow convergence. In this paper, we consider FL with arbitrary device participation probabilities for each round and show that by weighing each device's update by the reciprocal of their per-round participation probability, we can guarantee convergence to a stationary point. Our bound applies to non-convex loss functions and non-i.i.d. datasets and recovers state-of-the-art convergence rates for both full and uniform partial participation, including linear speedup, with only a single-sided learning rate. Then, using the derived convergence bound, we develop a new online client selection and power allocation algorithm that utilizes the Lyapunov drift-plus-penalty framework to opportunistically minimize a function of the convergence bound and the average communication time under a transmit power constraint. We use optimization over manifold techniques to obtain a solution to the minimization problem. Thanks to the Lyapunov framework, one key feature of the algorithm is that knowledge of the channel distribution is not required and only the instantaneous channel state information needs to be known. Using the CIFAR-10 dataset with varying levels of data heterogeneity, we show through simulations that the communication time can be significantly decreased using our algorithm compared to uniformly random participation, especially for heterogeneous channel conditions.


GneissWeb: Preparing High Quality Data for LLMs at Scale

arXiv.org Artificial Intelligence

Data quantity and quality play a vital role in determining the performance of Large Language Models (LLMs). High-quality data, in particular, can significantly boost the LLM's ability to generalize on a wide range of downstream tasks. Large pre-training datasets for leading LLMs remain inaccessible to the public, whereas many open datasets are small in size (less than 5 trillion tokens), limiting their suitability for training large models. In this paper, we introduce GneissWeb, a large dataset yielding around 10 trillion tokens that caters to the data quality and quantity requirements of training LLMs. Our GneissWeb recipe that produced the dataset consists of sharded exact sub-string deduplication and a judiciously constructed ensemble of quality filters. GneissWeb achieves a favorable trade-off between data quality and quantity, producing models that outperform models trained on state-of-the-art open large datasets (5+ trillion tokens). We show that models trained using GneissWeb dataset outperform those trained on FineWeb-V1.1.0 by 2.73 percentage points in terms of average score computed on a set of 11 commonly used benchmarks (both zero-shot and few-shot) for pre-training dataset evaluation. When the evaluation set is extended to 20 benchmarks (both zero-shot and few-shot), models trained using GneissWeb still achieve a 1.75 percentage points advantage over those trained on FineWeb-V1.1.0.


Local-Cloud Inference Offloading for LLMs in Multi-Modal, Multi-Task, Multi-Dialogue Settings

arXiv.org Artificial Intelligence

Compared to traditional machine learning models, recent large language models (LLMs) can exhibit multi-task-solving capabilities through multiple dialogues and multi-modal data sources. These unique characteristics of LLMs, beyond their large size, make their deployment more challenging during the inference stage. Specifically, (i) deploying LLMs on local devices faces computational, memory, and energy resource issues, while (ii) deploying them in the cloud cannot guarantee real-time service and incurs communication/usage costs. In this paper, we design a local-cloud LLM inference offloading (LCIO) system, featuring (i) a large-scale cloud LLM that can handle multi-modal data sources and (ii) a lightweight local LLM that can process simple tasks at high speed. LCIO employs resource-constrained reinforcement learning (RCRL) to determine where to make the inference (i.e., local vs. cloud) and which multi-modal data sources to use for each dialogue/task, aiming to maximize the long-term reward (which incorporates response quality, latency, and usage cost) while adhering to resource constraints. We also propose M4A1, a new dataset that accounts for multi-modal, multi-task, multi-dialogue, and multi-LLM characteristics, to investigate the capabilities of LLMs in various practical scenarios. We demonstrate the effectiveness of LCIO compared to baselines, showing significant savings in latency and cost while achieving satisfactory response quality.


Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining

arXiv.org Artificial Intelligence

Pretraining large language models (LLMs) on vast and heterogeneous datasets is crucial for achieving state-of-the-art performance across diverse downstream tasks. However, current training paradigms treat all samples equally, overlooking the importance or relevance of individual samples throughout the training process. Existing reweighting strategies, which primarily focus on group-level data importance, fail to leverage fine-grained instance-level information and do not adapt dynamically to individual sample importance as training progresses. In this paper, we introduce novel algorithms for dynamic, instance-level data reweighting aimed at improving both the efficiency and effectiveness of LLM pretraining. Our methods adjust the weight of each training sample based on its loss value in an online fashion, allowing the model to dynamically focus on more informative or important samples at the current training stage. In particular, our framework allows us to systematically devise reweighting strategies deprioritizing redundant or uninformative data, which we find tend to work best. Furthermore, we develop a new theoretical framework for analyzing the impact of loss-based reweighting on the convergence of gradient-based optimization, providing the first formal characterization of how these strategies affect convergence bounds. We empirically validate our approach across a spectrum of tasks, from pretraining 7B and 1.4B parameter LLMs to smaller-scale language models and linear regression problems, demonstrating that our loss-based reweighting approach can lead to faster convergence and significantly improved performance.


Parameter Tracking in Federated Learning with Adaptive Optimization

arXiv.org Artificial Intelligence

In Federated Learning (FL), model training performance is strongly impacted by data heterogeneity across clients. Gradient Tracking (GT) has recently emerged as a solution which mitigates this issue by introducing correction terms to local model updates. To date, GT has only been considered under Stochastic Gradient Descent (SGD)-based model training, while modern FL frameworks increasingly employ adaptive optimizers for improved convergence. In this work, we generalize the GT framework to a more flexible Parameter Tracking (PT) paradigm and propose two novel adaptive optimization algorithms, {\tt FAdamET} and {\tt FAdamGT}, that integrate PT into Adam-based FL. We provide a rigorous convergence analysis of these algorithms under non-convex settings. Our experimental results demonstrate that both proposed algorithms consistently outperform existing methods when evaluating total communication cost and total computation cost across varying levels of data heterogeneity, showing the effectiveness of correcting first-order information in federated adaptive optimization.


Adaptive Rank Allocation for Federated Parameter-Efficient Fine-Tuning of Language Models

arXiv.org Artificial Intelligence

Pre-trained Language Models (PLMs) have demonstrated their superiority and versatility in modern Natural Language Processing (NLP), effectively adapting to various downstream tasks through further fine-tuning. Federated Parameter-Efficient Fine-Tuning (FedPEFT) has emerged as a promising solution to address privacy and efficiency challenges in distributed training for PLMs on mobile devices. However, our measurements reveal two key limitations of FedPEFT: heterogeneous data leads to significant performance degradation, and a fixed parameter configuration results in communication inefficiency. To overcome these limitations, we propose FedARA, a novel Federated Adaptive Rank Allocation for parameter-efficient fine-tuning of language models. Specifically, FedARA employs truncated singular value decomposition (SVD) adaptation to enhance flexibility and expressiveness, significantly mitigating the adverse effects of data heterogeneity. Subsequently, it utilizes dynamic rank allocation to progressively identify critical ranks, effectively improving communication efficiency. Lastly, it leverages rank-based module pruning to remove inactive modules, steadily reducing local training time and peak memory usage in each round. Extensive experiments show that FedARA consistently outperforms weak baselines by an average of 8.49\% and strong baselines by 6.95\% across various datasets under data heterogeneity while significantly improving communication efficiency by 2.40\(\times\). Moreover, experiments on AGX Orin, Orin Nano and Raspberry Pi 5 devices demonstrate substantial decreases in total training time and energy consumption by up to 48.90\% and 46.95\%, respectively.


Hierarchical Federated Learning with Multi-Timescale Gradient Correction

arXiv.org Artificial Intelligence

While traditional federated learning (FL) typically focuses on a star topology where clients are directly connected to a central server, real-world distributed systems often exhibit hierarchical architectures. Hierarchical FL (HFL) has emerged as a promising solution to bridge this gap, leveraging aggregation points at multiple levels of the system. However, existing algorithms for HFL encounter challenges in dealing with multi-timescale model drift, i.e., model drift occurring across hierarchical levels of data heterogeneity. In this paper, we propose a multi-timescale gradient correction (MTGC) methodology to resolve this issue. Our key idea is to introduce distinct control variables to (i) correct the client gradient towards the group gradient, i.e., to reduce client model drift caused by local updates based on individual datasets, and (ii) correct the group gradient towards the global gradient, i.e., to reduce group model drift caused by FL over clients within the group. We analytically characterize the convergence behavior of MTGC under general non-convex settings, overcoming challenges associated with couplings between correction terms. We show that our convergence bound is immune to the extent of data heterogeneity, confirming the stability of the proposed algorithm against multi-level non-i.i.d.


MESS+: Energy-Optimal Inferencing in Language Model Zoos with Service Level Guarantees

arXiv.org Artificial Intelligence

Open-weight large language model (LLM) zoos allow users to quickly integrate state-of-the-art models into systems. Despite increasing availability, selecting the most appropriate model for a given task still largely relies on public benchmark leaderboards and educated guesses. This can be unsatisfactory for both inference service providers and end users, where the providers usually prioritize cost efficiency, while the end users usually prioritize model output quality for their inference requests. In commercial settings, these two priorities are often brought together in Service Level Agreements (SLA). We present MESS+, an online stochastic optimization algorithm for energy-optimal model selection from a model zoo, which works on a per-inference-request basis. For a given SLA that requires high accuracy, we are up to 2.5x more energy efficient with MESS+ than with randomly selecting an LLM from the zoo while maintaining SLA quality constraints.


Vertical Federated Learning with Missing Features During Training and Inference

arXiv.org Artificial Intelligence

Vertical federated learning trains models from feature-partitioned datasets across multiple clients, who collaborate without sharing their local data. Standard approaches assume that all feature partitions are available during both training and inference. Yet, in practice, this assumption rarely holds, as for many samples only a subset of the clients observe their partition. However, not utilizing incomplete samples during training harms generalization, and not supporting them during inference limits the utility of the model. Moreover, if any client leaves the federation after training, its partition becomes unavailable, rendering the learned model unusable. Missing feature blocks are therefore a key challenge limiting the applicability of vertical federated learning in real-world scenarios. To address this, we propose LASER-VFL, a vertical federated learning method for efficient training and inference of split neural network-based models that is capable of handling arbitrary sets of partitions. Our approach is simple yet effective, relying on the strategic sharing of model parameters and on task-sampling to train a family of predictors. We show that LASER-VFL achieves a $\mathcal{O}({1}/{\sqrt{T}})$ convergence rate for nonconvex objectives in general, $\mathcal{O}({1}/{T})$ for sufficiently large batch sizes, and linear convergence under the Polyak-{\L}ojasiewicz inequality. Numerical experiments show improved performance of LASER-VFL over the baselines. Remarkably, this is the case even in the absence of missing features. For example, for CIFAR-100, we see an improvement in accuracy of $21.4\%$ when each of four feature blocks is observed with a probability of 0.5 and of $12.2\%$ when all features are observed.


Cross-Silo Federated Learning for Multi-Tier Networks with Vertical and Horizontal Data Partitioning

arXiv.org Artificial Intelligence

In many settings, it is infeasible to transfer an entire dataset to a centralized cloud for downstream analysis, either due to practical constraints such as high communication cost or latency, or to maintain user privacy and security [11]. This has led to the deployment of distributed machine learning and deep-learning techniques where computation is performed collaboratively by a set of clients, each close to its own data source. Federated learning has emerged as a popular technique in this space, which performs iterative collaborative training of a global machine learning model over data distributed over a large number of clients without sending raw data over the network. The more commonly studied approach of federated learning is horizontal federated learning. In horizontal federated learning, the clients' datasets share the same set of features, but each client holds only a subset of the sample space, i.e., the data is horizontally partitioned among clients [11, 15, 21]. In this setting, the clients train a copy of a model on their local datasets for a few iterations and then communicate their updates in the form of model weights or gradients directly to a centralized parameter server. The parameter server then creates the centralized model by aggregating the individual client updates, and the process is repeated until the desired convergence criterion is met. Another scenario that arises in federated learning is when clients have different sets of features, but there is a sizable overlap in the sample ID space among their datasets [33].