Goto

Collaborating Authors

 Wang, Ruijie


Hephaestus: Improving Fundamental Agent Capabilities of Large Language Models through Continual Pre-Training

arXiv.org Artificial Intelligence

Due to the scarcity of agent-oriented pre-training data, LLM-based autonomous agents typically rely on complex prompting or extensive fine-tuning, which often fails to introduce new capabilities while preserving strong generalizability. We introduce Hephaestus-Forge, the first large-scale pre-training corpus designed to enhance the fundamental capabilities of LLM agents in API function calling, intrinsic reasoning and planning, and adapting to environmental feedback. Hephaestus-Forge comprises 103B agent-specific data encompassing 76,537 APIs, including both tool documentation to introduce knowledge of API functions and function calling trajectories to strengthen intrinsic reasoning. To explore effective training protocols, we investigate scaling laws to identify the optimal recipe in data mixing ratios. By continual pre-training on Hephaestus-Forge, Hephaestus outperforms small- to medium-scale open-source LLMs and rivals commercial LLMs on three agent benchmarks, demonstrating the effectiveness of our pre-training corpus in enhancing fundamental agentic capabilities and generalization of LLMs to new tasks or environments.


Foundation Models for CPS-IoT: Opportunities and Challenges

arXiv.org Artificial Intelligence

Methods from machine learning (ML) have transformed the implementation of Perception-Cognition-Communication-Action loops in Cyber-Physical Systems (CPS) and the Internet of Things (IoT), replacing mechanistic and basic statistical models with those derived from data. However, the first generation of ML approaches, which depend on supervised learning with annotated data to create task-specific models, faces significant limitations in scaling to the diverse sensor modalities, deployment configurations, application tasks, and operating dynamics characterizing real-world CPS-IoT systems. The success of task-agnostic foundation models (FMs), including multimodal large language models (LLMs), in addressing similar challenges across natural language, computer vision, and human speech has generated considerable enthusiasm for and exploration of FMs and LLMs as flexible building blocks in CPS-IoT analytics pipelines, promising to reduce the need for costly task-specific engineering. Nonetheless, a significant gap persists between the current capabilities of FMs and LLMs in the CPS-IoT domain and the requirements they must meet to be viable for CPS-IoT applications. In this paper, we analyze and characterize this gap through a thorough examination of the state of the art and our research, which extends beyond it in various dimensions. Based on the results of our analysis and research, we identify essential desiderata that CPS-IoT domain-specific FMs and LLMs must satisfy to bridge this gap. We also propose actions by CPS-IoT researchers to collaborate in developing key community resources necessary for establishing FMs and LLMs as foundational tools for the next generation of CPS-IoT systems.


Perturbation-based Graph Active Learning for Weakly-Supervised Belief Representation Learning

arXiv.org Artificial Intelligence

This paper addresses the problem of optimizing the allocation of labeling resources for semi-supervised belief representation learning in social networks. The objective is to strategically identify valuable messages on social media graphs that are worth labeling within a constrained budget, ultimately maximizing the task's performance. Despite the progress in unsupervised or semi-supervised methods in advancing belief and ideology representation learning on social networks and the remarkable efficacy of graph learning techniques, the availability of high-quality curated labeled social data can greatly benefit and further improve performances. Consequently, allocating labeling efforts is a critical research problem in scenarios where labeling resources are limited. This paper proposes a graph data augmentation-inspired perturbation-based active learning strategy (PerbALGraph) that progressively selects messages for labeling according to an automatic estimator, obviating human guidance. This estimator is based on the principle that messages in the network that exhibit heightened sensitivity to structural features of the observational data indicate landmark quality that significantly influences semi-supervision processes. We design the estimator to be the prediction variance under a set of designed graph perturbations, which is model-agnostic and application-independent. Extensive experiment results demonstrate the effectiveness of the proposed strategy for belief representation learning tasks.


On the Efficiency and Robustness of Vibration-based Foundation Models for IoT Sensing: A Case Study

arXiv.org Artificial Intelligence

This paper demonstrates the potential of vibration-based Foundation Models (FMs), pre-trained with unlabeled sensing data, to improve the robustness of run-time inference in (a class of) IoT applications. A case study is presented featuring a vehicle classification application using acoustic and seismic sensing. The work is motivated by the success of foundation models in the areas of natural language processing and computer vision, leading to generalizations of the FM concept to other domains as well, where significant amounts of unlabeled data exist that can be used for self-supervised pre-training. One such domain is IoT applications. Foundation models for selected sensing modalities in the IoT domain can be pre-trained in an environment-agnostic fashion using available unlabeled sensor data and then fine-tuned to the deployment at hand using a small amount of labeled data. The paper shows that the pre-training/fine-tuning approach improves the robustness of downstream inference and facilitates adaptation to different environmental conditions. More specifically, we present a case study in a real-world setting to evaluate a simple (vibration-based) FM-like model, called FOCAL, demonstrating its superior robustness and adaptation, compared to conventional supervised deep neural networks (DNNs). We also demonstrate its superior convergence over supervised solutions. Our findings highlight the advantages of vibration-based FMs (and FM-inspired selfsupervised models in general) in terms of inference robustness, runtime efficiency, and model adaptation (via fine-tuning) in resource-limited IoT settings.


SudokuSens: Enhancing Deep Learning Robustness for IoT Sensing Applications using a Generative Approach

arXiv.org Artificial Intelligence

This paper introduces SudokuSens, a generative framework for automated generation of training data in machine-learning-based Internet-of-Things (IoT) applications, such that the generated synthetic data mimic experimental configurations not encountered during actual sensor data collection. The framework improves the robustness of resulting deep learning models, and is intended for IoT applications where data collection is expensive. The work is motivated by the fact that IoT time-series data entangle the signatures of observed objects with the confounding intrinsic properties of the surrounding environment and the dynamic environmental disturbances experienced. To incorporate sufficient diversity into the IoT training data, one therefore needs to consider a combinatorial explosion of training cases that are multiplicative in the number of objects considered and the possible environmental conditions in which such objects may be encountered. Our framework substantially reduces these multiplicative training needs. To decouple object signatures from environmental conditions, we employ a Conditional Variational Autoencoder (CVAE) that allows us to reduce data collection needs from multiplicative to (nearly) linear, while synthetically generating (data for) the missing conditions. To obtain robustness with respect to dynamic disturbances, a session-aware temporal contrastive learning approach is taken. Integrating the aforementioned two approaches, SudokuSens significantly improves the robustness of deep learning for IoT applications. We explore the degree to which SudokuSens benefits downstream inference tasks in different data sets and discuss conditions under which the approach is particularly effective.


GNN2R: Weakly-Supervised Rationale-Providing Question Answering over Knowledge Graphs

arXiv.org Artificial Intelligence

Most current methods for multi-hop question answering (QA) over knowledge graphs (KGs) only provide final conclusive answers without explanations, such as a set of KG entities that is difficult for normal users to review and comprehend. This issue severely limits the application of KG-based QA in real-world scenarios. However, it is non-trivial to solve due to two challenges: First, annotations of reasoning chains of multi-hop questions, which could serve as supervision for explanation generation, are usually lacking. Second, it is difficult to maintain high efficiency when explicit KG triples need to be retrieved to generate explanations. In this paper, we propose a novel Graph Neural Network-based Two-Step Reasoning model (GNN2R) to solve this issue. GNN2R can provide both final answers and reasoning subgraphs as a rationale behind final answers efficiently with only weak supervision that is available through question-final answer pairs. We extensively evaluated GNN2R with detailed analyses in experiments. The results demonstrate that, in terms of effectiveness, efficiency, and quality of generated explanations, GNN2R outperforms existing state-of-the-art methods that are applicable to this task. Our code and pre-trained models are available at https://github.com/ruijie-wang-uzh/GNN2R.


QAGCN: Answering Multi-Relation Questions via Single-Step Implicit Reasoning over Knowledge Graphs

arXiv.org Artificial Intelligence

Multi-relation question answering (QA) is a challenging task, where given questions usually require long reasoning chains in KGs that consist of multiple relations. Recently, methods with explicit multi-step reasoning over KGs have been prominently used in this task and have demonstrated promising performance. Examples include methods that perform stepwise label propagation through KG triples and methods that navigate over KG triples based on reinforcement learning. A main weakness of these methods is that their reasoning mechanisms are usually complex and difficult to implement or train. In this paper, we argue that multi-relation QA can be achieved via end-to-end single-step implicit reasoning, which is simpler, more efficient, and easier to adopt. We propose QAGCN -- a Question-Aware Graph Convolutional Network (GCN)-based method that includes a novel GCN architecture with controlled question-dependent message propagation for the implicit reasoning. Extensive experiments have been conducted, where QAGCN achieved competitive and even superior performance compared to state-of-the-art explicit-reasoning methods.


FOCAL: Contrastive Learning for Multimodal Time-Series Sensing Signals in Factorized Orthogonal Latent Space

arXiv.org Artificial Intelligence

This paper proposes a novel contrastive learning framework, called FOCAL, for extracting comprehensive features from multimodal time-series sensing signals through self-supervised training. Existing multimodal contrastive frameworks mostly rely on the shared information between sensory modalities, but do not explicitly consider the exclusive modality information that could be critical to understanding the underlying sensing physics. Besides, contrastive frameworks for time series have not handled the temporal information locality appropriately. FOCAL solves these challenges by making the following contributions: First, given multimodal time series, it encodes each modality into a factorized latent space consisting of shared features and private features that are orthogonal to each other. The shared space emphasizes feature patterns consistent across sensory modalities through a modal-matching objective. In contrast, the private space extracts modality-exclusive information through a transformation-invariant objective. Second, we propose a temporal structural constraint for modality features, such that the average distance between temporally neighboring samples is no larger than that of temporally distant samples. Extensive evaluations are performed on four multimodal sensing datasets with two backbone encoders and two classifiers to demonstrate the superiority of FOCAL. It consistently outperforms the state-of-the-art baselines in downstream tasks with a clear margin, under different ratios of available labels. The code and self-collected dataset are available at https://github.com/tomoyoshki/focal.


Noisy Positive-Unlabeled Learning with Self-Training for Speculative Knowledge Graph Reasoning

arXiv.org Artificial Intelligence

This paper studies speculative reasoning task on real-world knowledge graphs (KG) that contain both \textit{false negative issue} (i.e., potential true facts being excluded) and \textit{false positive issue} (i.e., unreliable or outdated facts being included). State-of-the-art methods fall short in the speculative reasoning ability, as they assume the correctness of a fact is solely determined by its presence in KG, making them vulnerable to false negative/positive issues. The new reasoning task is formulated as a noisy Positive-Unlabeled learning problem. We propose a variational framework, namely nPUGraph, that jointly estimates the correctness of both collected and uncollected facts (which we call \textit{label posterior}) and updates model parameters during training. The label posterior estimation facilitates speculative reasoning from two perspectives. First, it improves the robustness of a label posterior-aware graph encoder against false positive links. Second, it identifies missing facts to provide high-quality grounds of reasoning. They are unified in a simple yet effective self-training procedure. Empirically, extensive experiments on three benchmark KG and one Twitter dataset with various degrees of false negative/positive cases demonstrate the effectiveness of nPUGraph.


Mutually-paced Knowledge Distillation for Cross-lingual Temporal Knowledge Graph Reasoning

arXiv.org Artificial Intelligence

This paper investigates cross-lingual temporal knowledge graph reasoning problem, which aims to facilitate reasoning on Temporal Knowledge Graphs (TKGs) in low-resource languages by transfering knowledge from TKGs in high-resource ones. The cross-lingual distillation ability across TKGs becomes increasingly crucial, in light of the unsatisfying performance of existing reasoning methods on those severely incomplete TKGs, especially in low-resource languages. However, it poses tremendous challenges in two aspects. First, the cross-lingual alignments, which serve as bridges for knowledge transfer, are usually too scarce to transfer sufficient knowledge between two TKGs. Second, temporal knowledge discrepancy of the aligned entities, especially when alignments are unreliable, can mislead the knowledge distillation process. We correspondingly propose a mutually-paced knowledge distillation model MP-KD, where a teacher network trained on a source TKG can guide the training of a student network on target TKGs with an alignment module. Concretely, to deal with the scarcity issue, MP-KD generates pseudo alignments between TKGs based on the temporal information extracted by our representation module. To maximize the efficacy of knowledge transfer and control the noise caused by the temporal knowledge discrepancy, we enhance MP-KD with a temporal cross-lingual attention mechanism to dynamically estimate the alignment strength. The two procedures are mutually paced along with model training. Extensive experiments on twelve cross-lingual TKG transfer tasks in the EventKG benchmark demonstrate the effectiveness of the proposed MP-KD method.