Vucetic, Branka
GNN-based Auto-Encoder for Short Linear Block Codes: A DRL Approach
Tian, Kou, Yue, Chentao, She, Changyang, Li, Yonghui, Vucetic, Branka
This paper presents a novel auto-encoder based end-to-end channel encoding and decoding. It integrates deep reinforcement learning (DRL) and graph neural networks (GNN) in code design by modeling the generation of code parity-check matrices as a Markov Decision Process (MDP), to optimize key coding performance metrics such as error-rates and code algebraic properties. An edge-weighted GNN (EW-GNN) decoder is proposed, which operates on the Tanner graph with an iterative message-passing structure. Once trained on a single linear block code, the EW-GNN decoder can be directly used to decode other linear block codes of different code lengths and code rates. An iterative joint training of the DRL-based code designer and the EW-GNN decoder is performed to optimize the end-end encoding and decoding process. Simulation results show the proposed auto-encoder significantly surpasses several traditional coding schemes at short block lengths, including low-density parity-check (LDPC) codes with the belief propagation (BP) decoding and the maximum-likelihood decoding (MLD), and BCH with BP decoding, offering superior error-correction capabilities while maintaining low decoding complexity.
Wireless Human-Machine Collaboration in Industry 5.0
Pang, Gaoyang, Liu, Wanchun, Niyato, Dusit, Quevedo, Daniel, Vucetic, Branka, Li, Yonghui
--Wireless Human-Machine Collaboration (WHMC) represents a critical advancement for Industry 5.0, enabling seamless interaction between humans and machines across geographically distributed systems. As the WHMC systems become increasingly important for achieving complex collaborative control tasks, ensuring their stability is essential for practical deployment and long-term operation. Stability analysis certifies how the closed-loop system will behave under model randomness, which is essential for systems operating with wireless communications. However, the fundamental stability analysis of the WHMC systems remains an unexplored challenge due to the intricate interplay between the stochastic nature of wireless communications, dynamic human operations, and the inherent complexities of control system dynamics. This paper establishes a fundamental WHMC model incorporating dual wireless loops for machine and human control. Our framework accounts for practical factors such as short-packet transmissions, fading channels, and advanced HARQ schemes. We model human control lag as a Markov process, which is crucial for capturing the stochastic nature of human interactions. Building on this model, we propose a stochastic cycle-cost-based approach to derive a stability condition for the WHMC system, expressed in terms of wireless channel statistics, human dynamics, and control parameters. Our findings are validated through extensive numerical simulations and a proof-of-concept experiment, where we developed and tested a novel wireless collaborative cart-pole control system. The results confirm the effectiveness of our approach and provide a robust framework for future research on WHMC systems in more complex environments. HE Fourth Industrial Revolution, known as Industry 4.0, envisions significantly increased automation and mechanization in manufacturing, driven by rapidly advancing cyber-physical systems (CPS) with minimal human intervention on the factory floor [1]. However, many dynamically changing and unforeseen control tasks in manufacturing, such as recon-figuring the production line, are challenging for autonomous machines to handle alone [2]. Therefore, humans are rein-troduced to the manufacturing process to collaborate with machines in the fifth industrial revolution, Industry 5.0 [3]. In the Industry 5.0 era, human-machine collaboration (HMC) emerges as a key enabling technology to boost productivity, efficiency, and sustainability by combining human's creativity, The work of W . Liu was supported by the Australian Research Council's Discovery Early Career Researcher A ward (DECRA) Project DE230100016.
Communication-Control Codesign for Large-Scale Wireless Networked Control Systems
Pang, Gaoyang, Liu, Wanchun, Niyato, Dusit, Vucetic, Branka, Li, Yonghui
Wireless Networked Control Systems (WNCSs) are essential to Industry 4.0, enabling flexible control in applications, such as drone swarms and autonomous robots. The interdependence between communication and control requires integrated design, but traditional methods treat them separately, leading to inefficiencies. Current codesign approaches often rely on simplified models, focusing on single-loop or independent multi-loop systems. However, large-scale WNCSs face unique challenges, including coupled control loops, time-correlated wireless channels, trade-offs between sensing and control transmissions, and significant computational complexity. To address these challenges, we propose a practical WNCS model that captures correlated dynamics among multiple control loops with spatially distributed sensors and actuators sharing limited wireless resources over multi-state Markov block-fading channels. We formulate the codesign problem as a sequential decision-making task that jointly optimizes scheduling and control inputs across estimation, control, and communication domains. To solve this problem, we develop a Deep Reinforcement Learning (DRL) algorithm that efficiently handles the hybrid action space, captures communication-control correlations, and ensures robust training despite sparse cross-domain variables and floating control inputs. Extensive simulations show that the proposed DRL approach outperforms benchmarks and solves the large-scale WNCS codesign problem, providing a scalable solution for industrial automation.
Graph Representation Learning for Contention and Interference Management in Wireless Networks
Gu, Zhouyou, Vucetic, Branka, Chikkam, Kishore, Aliberti, Pasquale, Hardjawana, Wibowo
Restricted access window (RAW) in Wi-Fi 802.11ah networks manages contention and interference by grouping users and allocating periodic time slots for each group's transmissions. We will find the optimal user grouping decisions in RAW to maximize the network's worst-case user throughput. We review existing user grouping approaches and highlight their performance limitations in the above problem. We propose formulating user grouping as a graph construction problem where vertices represent users and edge weights indicate the contention and interference. This formulation leverages the graph's max cut to group users and optimizes edge weights to construct the optimal graph whose max cut yields the optimal grouping decisions. To achieve this optimal graph construction, we design an actor-critic graph representation learning (AC-GRL) algorithm. Specifically, the actor neural network (NN) is trained to estimate the optimal graph's edge weights using path losses between users and access points. A graph cut procedure uses semidefinite programming to solve the max cut efficiently and return the grouping decisions for the given weights. The critic NN approximates user throughput achieved by the above-returned decisions and is used to improve the actor. Additionally, we present an architecture that uses the online-measured throughput and path losses to fine-tune the decisions in response to changes in user populations and their locations. Simulations show that our methods achieve $30\%\sim80\%$ higher worst-case user throughput than the existing approaches and that the proposed architecture can further improve the worst-case user throughput by $5\%\sim30\%$ while ensuring timely updates of grouping decisions.
Hybrid-Task Meta-Learning: A Graph Neural Network Approach for Scalable and Transferable Bandwidth Allocation
Hao, Xin, She, Changyang, Yeoh, Phee Lep, Liu, Yuhong, Vucetic, Branka, Li, Yonghui
In this paper, we develop a deep learning-based bandwidth allocation policy that is: 1) scalable with the number of users and 2) transferable to different communication scenarios, such as non-stationary wireless channels, different quality-of-service (QoS) requirements, and dynamically available resources. To support scalability, the bandwidth allocation policy is represented by a graph neural network (GNN), with which the number of training parameters does not change with the number of users. To enable the generalization of the GNN, we develop a hybrid-task meta-learning (HML) algorithm that trains the initial parameters of the GNN with different communication scenarios during meta-training. Next, during meta-testing, a few samples are used to fine-tune the GNN with unseen communication scenarios. Simulation results demonstrate that our HML approach can improve the initial performance by $8.79\%$, and sampling efficiency by $73\%$, compared with existing benchmarks. After fine-tuning, our near-optimal GNN-based policy can achieve close to the same reward with much lower inference complexity compared to the optimal policy obtained using iterative optimization.
Secure Deep Reinforcement Learning for Dynamic Resource Allocation in Wireless MEC Networks
Hao, Xin, Yeoh, Phee Lep, She, Changyang, Vucetic, Branka, Li, Yonghui
This paper proposes a blockchain-secured deep reinforcement learning (BC-DRL) optimization framework for {data management and} resource allocation in decentralized {wireless mobile edge computing (MEC)} networks. In our framework, {we design a low-latency reputation-based proof-of-stake (RPoS) consensus protocol to select highly reliable blockchain-enabled BSs to securely store MEC user requests and prevent data tampering attacks.} {We formulate the MEC resource allocation optimization as a constrained Markov decision process that balances minimum processing latency and denial-of-service (DoS) probability}. {We use the MEC aggregated features as the DRL input to significantly reduce the high-dimensionality input of the remaining service processing time for individual MEC requests. Our designed constrained DRL effectively attains the optimal resource allocations that are adapted to the dynamic DoS requirements. We provide extensive simulation results and analysis to} validate that our BC-DRL framework achieves higher security, reliability, and resource utilization efficiency than benchmark blockchain consensus protocols and {MEC} resource allocation algorithms.
Graph Neural Network-Based Bandwidth Allocation for Secure Wireless Communications
Hao, Xin, Yeoh, Phee Lep, Liu, Yuhong, She, Changyang, Vucetic, Branka, Li, Yonghui
This paper designs a graph neural network (GNN) to improve bandwidth allocations for multiple legitimate wireless users transmitting to a base station in the presence of an eavesdropper. To improve the privacy and prevent eavesdropping attacks, we propose a user scheduling algorithm to schedule users satisfying an instantaneous minimum secrecy rate constraint. Based on this, we optimize the bandwidth allocations with three algorithms namely iterative search (IvS), GNN-based supervised learning (GNN-SL), and GNN-based unsupervised learning (GNN-USL). We present a computational complexity analysis which shows that GNN-SL and GNN-USL can be more efficient compared to IvS which is limited by the bandwidth block size. Numerical simulation results highlight that our proposed GNN-based resource allocations can achieve a comparable sum secrecy rate compared to IvS with significantly lower computational complexity. Furthermore, we observe that the GNN approach is more robust to uncertainties in the eavesdropper's channel state information, especially compared with the best channel allocation scheme.
Semantic-aware Transmission Scheduling: a Monotonicity-driven Deep Reinforcement Learning Approach
Chen, Jiazheng, Liu, Wanchun, Quevedo, Daniel, Li, Yonghui, Vucetic, Branka
For cyber-physical systems in the 6G era, semantic communications connecting distributed devices for dynamic control and remote state estimation are required to guarantee application-level performance, not merely focus on communication-centric performance. Semantics here is a measure of the usefulness of information transmissions. Semantic-aware transmission scheduling of a large system often involves a large decision-making space, and the optimal policy cannot be obtained by existing algorithms effectively. In this paper, we first investigate the fundamental properties of the optimal semantic-aware scheduling policy and then develop advanced deep reinforcement learning (DRL) algorithms by leveraging the theoretical guidelines. Our numerical results show that the proposed algorithms can substantially reduce training time and enhance training performance compared to benchmark algorithms.
Task-Oriented Cross-System Design for Timely and Accurate Modeling in the Metaverse
Meng, Zhen, Chen, Kan, Diao, Yufeng, She, Changyang, Zhao, Guodong, Imran, Muhammad Ali, Vucetic, Branka
In this paper, we establish a task-oriented cross-system design framework to minimize the required packet rate for timely and accurate modeling of a real-world robotic arm in the Metaverse, where sensing, communication, prediction, control, and rendering are considered. To optimize a scheduling policy and prediction horizons, we design a Constraint Proximal Policy Optimization(C-PPO) algorithm by integrating domain knowledge from relevant systems into the advanced reinforcement learning algorithm, Proximal Policy Optimization(PPO). Specifically, the Jacobian matrix for analyzing the motion of the robotic arm is included in the state of the C-PPO algorithm, and the Conditional Value-at-Risk(CVaR) of the state-value function characterizing the long-term modeling error is adopted in the constraint. Besides, the policy is represented by a two-branch neural network determining the scheduling policy and the prediction horizons, respectively. To evaluate our algorithm, we build a prototype including a real-world robotic arm and its digital model in the Metaverse. The experimental results indicate that domain knowledge helps to reduce the convergence time and the required packet rate by up to 50%, and the cross-system design framework outperforms a baseline framework in terms of the required packet rate and the tail distribution of the modeling error.
Structure-Enhanced DRL for Optimal Transmission Scheduling
Chen, Jiazheng, Liu, Wanchun, Quevedo, Daniel E., Khosravirad, Saeed R., Li, Yonghui, Vucetic, Branka
Remote state estimation of large-scale distributed dynamic processes plays an important role in Industry 4.0 applications. In this paper, we focus on the transmission scheduling problem of a remote estimation system. First, we derive some structural properties of the optimal sensor scheduling policy over fading channels. Then, building on these theoretical guidelines, we develop a structure-enhanced deep reinforcement learning (DRL) framework for optimal scheduling of the system to achieve the minimum overall estimation mean-square error (MSE). In particular, we propose a structure-enhanced action selection method, which tends to select actions that obey the policy structure. This explores the action space more effectively and enhances the learning efficiency of DRL agents. Furthermore, we introduce a structure-enhanced loss function to add penalties to actions that do not follow the policy structure. Our numerical experiments illustrate that the proposed structure-enhanced DRL algorithms can save the training time by 50% and reduce the remote estimation MSE by 10% to 25%, when compared to benchmark DRL algorithms. In addition, we show that the derived structural properties exist in a wide range of dynamic scheduling problems that go beyond remote state estimation.