Goto

Collaborating Authors

 Vitercik, Ellen


Subsampling Graphs with GNN Performance Guarantees

arXiv.org Artificial Intelligence

How can we subsample graph data so that a graph neural network (GNN) trained on the subsample achieves performance comparable to training on the full dataset? This question is of fundamental interest, as smaller datasets reduce labeling costs, storage requirements, and computational resources needed for training. Selecting an effective subset is challenging: a poorly chosen subsample can severely degrade model performance, and empirically testing multiple subsets for quality obviates the benefits of subsampling. Therefore, it is critical that subsampling comes with guarantees on model performance. In this work, we introduce new subsampling methods for graph datasets that leverage the Tree Mover's Distance to reduce both the number of graphs and the size of individual graphs. To our knowledge, our approach is the first that is supported by rigorous theoretical guarantees: we prove that training a GNN on the subsampled data results in a bounded increase in loss compared to training on the full dataset. Unlike existing methods, our approach is both model-agnostic, requiring minimal assumptions about the GNN architecture, and label-agnostic, eliminating the need to label the full training set. This enables subsampling early in the model development pipeline (before data annotation, model selection, and hyperparameter tuning) reducing costs and resources needed for storage, labeling, and training. We validate our theoretical results with experiments showing that our approach outperforms existing subsampling methods across multiple datasets.


EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

arXiv.org Artificial Intelligence

A fundamental problem in combinatorial optimization is identifying equivalent formulations, which can lead to more efficient solution strategies and deeper insights into a problem's computational complexity. The need to automatically identify equivalence between problem formulations has grown as optimization copilots--systems that generate problem formulations from natural language descriptions--have proliferated. However, existing approaches to checking formulation equivalence lack grounding, relying on simple heuristics which are insufficient for rigorous validation. Inspired by Karp reductions, in this work we introduce quasi-Karp equivalence, a formal criterion for determining when two optimization formulations are equivalent based on the existence of a mapping between their decision variables. We propose EquivaMap, a framework that leverages large language models to automatically discover such mappings, enabling scalable and reliable equivalence verification. To evaluate our approach, we construct the first open-source dataset of equivalent optimization formulations, generated by applying transformations such as adding slack variables or valid inequalities to existing formulations. Empirically, EquivaMap significantly outperforms existing methods, achieving substantial improvements in correctly identifying formulation equivalence.


Algorithms with Calibrated Machine Learning Predictions

arXiv.org Machine Learning

In recent years, advances in machine learning (ML) models have inspired researchers to revisit the design of classic online algorithms, incorporating insights from ML-based advice to improve decision-making in real-world environments. This research area, termed algorithms with predictions, seeks to design algorithms that are both robust to worst-case inputs and achieve performance that improves with prediction accuracy (a desideratum termed consistency) (Lykouris and Vassilvitskii, 2018). Many prediction-aided algorithms have been developed for online decision-making tasks ranging from rent-or-buy problems like ski rental (Purohit et al., 2018; Anand et al., 2020; Sun et al., 2024) to sequencing problems like job scheduling (Cho et al., 2022). Algorithms in this framework often rely on global uncertainty parameters intended to summarize the trustworthiness of all of the model's predictions, with extreme settings indicating that predictions are either all perfect or all uninformative (e.g., Mahdian et al., 2007; Lykouris and Vassilvitskii, 2018; Purohit et al., 2018; Rohatgi, 2020; Wei and Zhang, 2020; Antoniadis et al., 2020). However, ML models often produce local, input-specific uncertainty estimates, exposing a disconnect between theory and practice.


Wait-Less Offline Tuning and Re-solving for Online Decision Making

arXiv.org Machine Learning

Online linear programming (OLP) has found broad applications in revenue management and resource allocation. State-of-the-art OLP algorithms achieve low regret by repeatedly solving linear programming (LP) subproblems that incorporate updated resource information. However, LP-based methods are computationally expensive and often inefficient for large-scale applications. In contrast, recent first-order OLP algorithms are more computationally efficient but typically suffer from worse regret guarantees. To address these shortcomings, we propose a new algorithm that combines the strengths of LP-based and first-order OLP methods. The algorithm re-solves the LP subproblems periodically at a predefined frequency $f$ and uses the latest dual prices to guide online decision-making. In addition, a first-order method runs in parallel during each interval between LP re-solves, smoothing resource consumption. Our algorithm achieves $\mathscr{O}(\log (T/f) + \sqrt{f})$ regret, delivering a "wait-less" online decision-making process that balances the computational efficiency of first-order methods and the superior regret guarantee of LP-based methods.


LLMs for Cold-Start Cutting Plane Separator Configuration

arXiv.org Artificial Intelligence

Mixed integer linear programming (MILP) solvers ship with a staggering number of parameters that are challenging to select a priori for all but expert optimization users, but can have an outsized impact on the performance of the MILP solver. Existing machine learning (ML) approaches to configure solvers require training ML models by solving thousands of related MILP instances, generalize poorly to new problem sizes, and often require implementing complex ML pipelines and custom solver interfaces that can be difficult to integrate into existing optimization workflows. In this paper, we introduce a new LLM-based framework to configure which cutting plane separators to use for a given MILP problem with little to no training data based on characteristics of the instance, such as a natural language description of the problem and the associated LaTeX formulation. We augment these LLMs with descriptions of cutting plane separators available in a given solver, grounded by summarizing the existing research literature on separators. While individual solver configurations have a large variance in performance, we present a novel ensembling strategy that clusters and aggregates configurations to create a small portfolio of high-performing configurations. Our LLM-based methodology requires no custom solver interface, can find a high-performing configuration by solving only a small number of MILPs, and can generate the configuration with simple API calls that run in under a second. Numerical results show our approach is competitive with existing configuration approaches on a suite of classic combinatorial optimization problems and real-world datasets with only a fraction of the training data and computation time.


Algorithmic Content Selection and the Impact of User Disengagement

arXiv.org Artificial Intelligence

The content selection problem of digital services is often modeled as a decision-process where a service chooses, over multiple rounds, an arm to pull from a set of arms that each return a certain reward. This classical model does not account for the possibility that users disengage when dissatisfied and thus fails to capture an important trade-off between choosing content that promotes future engagement versus immediate reward. In this work, we introduce a model for the content selection problem where dissatisfied users may disengage and where the content that maximizes immediate reward does not necessarily maximize the odds of future user engagement. We show that when the relationship between each arm's expected reward and effect on user satisfaction are linearly related, an optimal content selection policy can be computed efficiently with dynamic programming under natural assumptions about the complexity of the users' engagement patterns. Moreover, we show that in an online learning setting where users with unknown engagement patterns arrive, there is a variant of Hedge that attains a $\tfrac 12$-competitive ratio regret bound. We also use our model to identify key primitives that determine how digital services should weigh engagement against revenue. For example, when it is more difficult for users to rejoin a service they are disengaged from, digital services naturally see a reduced payoff but user engagement may -- counterintuitively -- increase.


Bandit Profit-maximization for Targeted Marketing

arXiv.org Artificial Intelligence

We study a sequential profit-maximization problem, optimizing for both price and ancillary variables like marketing expenditures. Specifically, we aim to maximize profit over an arbitrary sequence of multiple demand curves, each dependent on a distinct ancillary variable, but sharing the same price. A prototypical example is targeted marketing, where a firm (seller) wishes to sell a product over multiple markets. The firm may invest different marketing expenditures for different markets to optimize customer acquisition, but must maintain the same price across all markets. Moreover, markets may have heterogeneous demand curves, each responding to prices and marketing expenditures differently. The firm's objective is to maximize its gross profit, the total revenue minus marketing costs. Our results are near-optimal algorithms for this class of problems in an adversarial bandit setting, where demand curves are arbitrary non-adaptive sequences, and the firm observes only noisy evaluations of chosen points on the demand curves. For $n$ demand curves (markets), we prove a regret upper bound of $\tilde{O}(nT^{3/4})$ and a lower bound of $\Omega((nT)^{3/4})$ for monotonic demand curves, and a regret bound of $\tilde{\Theta}(nT^{2/3})$ for demands curves that are monotonic in price and concave in the ancillary variables.


From Large to Small Datasets: Size Generalization for Clustering Algorithm Selection

arXiv.org Machine Learning

In clustering algorithm selection, we are given a massive dataset and must efficiently select which clustering algorithm to use. We study this problem in a semi-supervised setting, with an unknown ground-truth clustering that we can only access through expensive oracle queries. Ideally, the clustering algorithm's output will be structurally close to the ground truth. We approach this problem by introducing a notion of size generalization for clustering algorithm accuracy. We identify conditions under which we can (1) subsample the massive clustering instance, (2) evaluate a set of candidate algorithms on the smaller instance, and (3) guarantee that the algorithm with the best accuracy on the small instance will have the best accuracy on the original big instance. We provide theoretical size generalization guarantees for three classic clustering algorithms: single-linkage, k-means++, and (a smoothed variant of) Gonzalez's k-centers heuristic. We validate our theoretical analysis with empirical results, observing that on real-world clustering instances, we can use a subsample of as little as 5% of the data to identify which algorithm is best on the full dataset.


Leveraging Reviews: Learning to Price with Buyer and Seller Uncertainty

arXiv.org Artificial Intelligence

In online marketplaces, customers have access to hundreds of reviews for a single product. Buyers often use reviews from other customers that share their type -- such as height for clothing, skin type for skincare products, and location for outdoor furniture -- to estimate their values, which they may not know a priori. Customers with few relevant reviews may hesitate to make a purchase except at a low price, so for the seller, there is a tension between setting high prices and ensuring that there are enough reviews so that buyers can confidently estimate their values. Simultaneously, sellers may use reviews to gauge the demand for items they wish to sell. In this work, we study this pricing problem in an online setting where the seller interacts with a set of buyers of finitely many types, one by one, over a series of $T$ rounds. At each round, the seller first sets a price. Then a buyer arrives and examines the reviews of the previous buyers with the same type, which reveal those buyers' ex-post values. Based on the reviews, the buyer decides to purchase if they have good reason to believe that their ex-ante utility is positive. Crucially, the seller does not know the buyer's type when setting the price, nor even the distribution over types. We provide a no-regret algorithm that the seller can use to obtain high revenue. When there are $d$ types, after $T$ rounds, our algorithm achieves a problem-independent $\tilde O(T^{2/3}d^{1/3})$ regret bound. However, when the smallest probability $q_{\text{min}}$ that any given type appears is large, specifically when $q_{\text{min}} \in \Omega(d^{-2/3}T^{-1/3})$, then the same algorithm achieves a $\tilde O(T^{1/2}q_{\text{min}}^{-1/2})$ regret bound. We complement these upper bounds with matching lower bounds in both regimes, showing that our algorithm is minimax optimal up to lower-order terms.


Disincentivizing Polarization in Social Networks

arXiv.org Artificial Intelligence

On social networks, algorithmic personalization drives users into filter bubbles where they rarely see content that deviates from their interests. We present a model for content curation and personalization that avoids filter bubbles, along with algorithmic guarantees and nearly matching lower bounds. In our model, the platform interacts with $n$ users over $T$ timesteps, choosing content for each user from $k$ categories. The platform receives stochastic rewards as in a multi-arm bandit. To avoid filter bubbles, we draw on the intuition that if some users are shown some category of content, then all users should see at least a small amount of that content. We first analyze a naive formalization of this intuition and show it has unintended consequences: it leads to ``tyranny of the majority'' with the burden of diversification borne disproportionately by those with minority interests. This leads us to our model which distributes this burden more equitably. We require that the probability any user is shown a particular type of content is at least $\gamma$ times the average probability all users are shown that type of content. Full personalization corresponds to $\gamma = 0$ and complete homogenization corresponds to $\gamma = 1$; hence, $\gamma$ encodes a hard cap on the level of personalization. We also analyze additional formulations where the platform can exceed its cap but pays a penalty proportional to its constraint violation. We provide algorithmic guarantees for optimizing recommendations subject to these constraints. These include nearly matching upper and lower bounds for the entire range of $\gamma \in [0,1]$ showing that the reward of a multi-agent variant of UCB is nearly optimal. Using real-world preference data, we empirically verify that under our model, users share the burden of diversification with only minor utility loss under our constraints.