Teney, Damien
Do We Always Need the Simplicity Bias? Looking for Optimal Inductive Biases in the Wild
Teney, Damien, Jiang, Liangze, Gogianu, Florin, Abbasnejad, Ehsan
Neural architectures tend to fit their data with relatively simple functions. This "simplicity bias" is widely regarded as key to their success. This paper explores the limits of this principle. Building on recent findings that the simplicity bias stems from ReLU activations [96], we introduce a method to meta-learn new activation functions and inductive biases better suited to specific tasks. Findings: We identify multiple tasks where the simplicity bias is inadequate and ReLUs suboptimal. In these cases, we learn new activation functions that perform better by inducing a prior of higher complexity. Interestingly, these cases correspond to domains where neural networks have historically struggled: tabular data, regression tasks, cases of shortcut learning, and algorithmic grokking tasks. In comparison, the simplicity bias induced by ReLUs proves adequate on image tasks where the best learned activations are nearly identical to ReLUs and GeLUs. Implications: Contrary to popular belief, the simplicity bias of ReLU networks is not universally useful. It is near-optimal for image classification, but other inductive biases are sometimes preferable. We showed that activation functions can control these inductive biases, but future tailored architectures might provide further benefits. Advances are still needed to characterize a model's inductive biases beyond "complexity", and their adequacy with the data.
OOD-Chameleon: Is Algorithm Selection for OOD Generalization Learnable?
Jiang, Liangze, Teney, Damien
Out-of-distribution (OOD) generalization is challenging because distribution shifts come in many forms. A multitude of learning algorithms exist and each can improve performance in specific OOD situations. We posit that much of the challenge of OOD generalization lies in choosing the right algorithm for the right dataset. However, such algorithm selection is often elusive under complex real-world shifts. In this work, we formalize the task of algorithm selection for OOD generalization and investigate whether it could be approached by learning. We propose a solution, dubbed OOD-Chameleon that treats the task as a supervised classification over candidate algorithms. We construct a dataset of datasets to learn from, which represents diverse types, magnitudes and combinations of shifts (covariate shift, label shift, spurious correlations). We train the model to predict the relative performance of algorithms given a dataset's characteristics. This enables a priori selection of the best learning strategy, i.e. without training various models as needed with traditional model selection. Our experiments show that the adaptive selection outperforms any individual algorithm and simple selection heuristics, on unseen datasets of controllable and realistic image data. Inspecting the model shows that it learns non-trivial data/algorithms interactions, and reveals the conditions for any one algorithm to surpass another. This opens new avenues for (1) enhancing OOD generalization with existing algorithms instead of designing new ones, and (2) gaining insights into the applicability of existing algorithms with respect to datasets' properties.
Synergy and Diversity in CLIP: Enhancing Performance Through Adaptive Backbone Ensembling
Rodriguez-Opazo, Cristian, Abbasnejad, Ehsan, Teney, Damien, Marrese-Taylor, Edison, Damirchi, Hamed, Hengel, Anton van den
Contrastive Language-Image Pretraining (CLIP) stands out as a prominent method for image representation learning. Various architectures, from vision transformers (ViTs) to convolutional networks (ResNets) have been trained with CLIP to serve as general solutions to diverse vision tasks. This paper explores the differences across various CLIP-trained vision backbones. Despite using the same data and training objective, we find that these architectures have notably different representations, different classification performance across datasets, and different robustness properties to certain types of image perturbations. Our findings indicate a remarkable possible synergy across backbones by leveraging their respective strengths. In principle, classification accuracy could be improved by over 40 percentage with an informed selection of the optimal backbone per test example. Using this insight, we develop a straightforward yet powerful approach to adaptively ensemble multiple backbones. The approach uses as few as one labeled example per class to tune the adaptive combination of backbones. On a large collection of datasets, the method achieves a remarkable increase in accuracy of up to 39.1% over the best single backbone, well beyond traditional ensembles.
CulturePark: Boosting Cross-cultural Understanding in Large Language Models
Li, Cheng, Teney, Damien, Yang, Linyi, Wen, Qingsong, Xie, Xing, Wang, Jindong
Cultural bias is pervasive in many large language models (LLMs), largely due to the deficiency of data representative of different cultures. Typically, cultural datasets and benchmarks are constructed either by extracting subsets of existing datasets or by aggregating from platforms such as Wikipedia and social media. However, these approaches are highly dependent on real-world data and human annotations, making them costly and difficult to scale. Inspired by cognitive theories on social communication, this paper introduces CulturePark, an LLM-powered multi-agent communication framework for cultural data collection. CulturePark simulates cross-cultural human communication with LLM-based agents playing roles in different cultures. It generates high-quality cross-cultural dialogues encapsulating human beliefs, norms, and customs. Using CulturePark, we generated 41,000 cultural samples to fine-tune eight culture-specific LLMs. We evaluated these models across three downstream tasks: content moderation, cultural alignment, and cultural education. Results show that for content moderation, our GPT-3.5-based models either match or outperform GPT-4 on datasets. Regarding cultural alignment, our models surpass GPT-4 on Hofstede's VSM 13 framework. Furthermore, for cultural education of human participants, our models demonstrate superior outcomes in both learning efficacy and user experience compared to GPT-4. CulturePark proves an important step in addressing cultural bias and advancing the democratization of AI, highlighting the critical role of culturally inclusive data in model training.
Neural Redshift: Random Networks are not Random Functions
Teney, Damien, Nicolicioiu, Armand, Hartmann, Valentin, Abbasnejad, Ehsan
Our understanding of the generalization capabilities of neural networks (NNs) is still incomplete. Prevailing explanations are based on implicit biases of gradient descent (GD) but they cannot account for the capabilities of models from gradient-free methods nor the simplicity bias recently observed in untrained networks. This paper seeks other sources of generalization in NNs. Findings. To understand the inductive biases provided by architectures independently from GD, we examine untrained, random-weight networks. Even simple MLPs show strong inductive biases: uniform sampling in weight space yields a very biased distribution of functions in terms of complexity. But unlike common wisdom, NNs do not have an inherent "simplicity bias". This property depends on components such as ReLUs, residual connections, and layer normalizations. Alternative architectures can be built with a bias for any level of complexity. Transformers also inherit all these properties from their building blocks. Implications. We provide a fresh explanation for the success of deep learning independent from gradient-based training. It points at promising avenues for controlling the solutions implemented by trained models.
Shortcut Bias Mitigation via Ensemble Diversity Using Diffusion Probabilistic Models
Scimeca, Luca, Rubinstein, Alexander, Teney, Damien, Oh, Seong Joon, Nicolicioiu, Armand Mihai, Bengio, Yoshua
Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to a phenomenon known as simplicity bias, where a model relies on erroneous, easy-to-learn cues while ignoring reliable ones. In this work, we propose an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs) for shortcut bias mitigation. We show that at particular training intervals, DPMs can generate images with novel feature combinations, even when trained on images displaying correlated input features. We leverage this crucial property to generate synthetic counterfactuals to increase model diversity via ensemble disagreement. We show that DPM-guided diversification is sufficient to remove dependence on primary shortcut cues, without a need for additional supervised signals. We further empirically quantify its efficacy on several diversification objectives, and finally show improved generalization and diversification performance on par with prior work that relies on auxiliary data collection.
Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts in Underspecified Visual Tasks
Scimeca, Luca, Rubinstein, Alexander, Nicolicioiu, Armand Mihai, Teney, Damien, Bengio, Yoshua
Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to shortcut learning phenomena, where a model may rely on erroneous, easy-to-learn, cues while ignoring reliable ones. In this work, we propose an ensemble diversification framework exploiting the generation of synthetic counterfactuals using Diffusion Probabilistic Models (DPMs). We discover that DPMs have the inherent capability to represent multiple visual cues independently, even when they are largely correlated in the training data. We leverage this characteristic to encourage model diversity and empirically show the efficacy of the approach with respect to several diversification objectives. We show that diffusion-guided diversification can lead models to avert attention from shortcut cues, achieving ensemble diversity performance comparable to previous methods requiring additional data collection.
Bi-directional Training for Composed Image Retrieval via Text Prompt Learning
Liu, Zheyuan, Sun, Weixuan, Hong, Yicong, Teney, Damien, Gould, Stephen
Composed image retrieval searches for a target image based on a multi-modal user query comprised of a reference image and modification text describing the desired changes. Existing approaches to solving this challenging task learn a mapping from the (reference image, modification text)-pair to an image embedding that is then matched against a large image corpus. One area that has not yet been explored is the reverse direction, which asks the question, what reference image when modified as described by the text would produce the given target image? In this work we propose a bi-directional training scheme that leverages such reversed queries and can be applied to existing composed image retrieval architectures with minimum changes, which improves the performance of the model. To encode the bi-directional query we prepend a learnable token to the modification text that designates the direction of the query and then finetune the parameters of the text embedding module. We make no other changes to the network architecture. Experiments on two standard datasets show that our novel approach achieves improved performance over a baseline BLIP-based model that itself already achieves competitive performance. Our code is released at https://github.com/Cuberick-Orion/Bi-Blip4CIR.
ZooPFL: Exploring Black-box Foundation Models for Personalized Federated Learning
Lu, Wang, Yu, Hao, Wang, Jindong, Teney, Damien, Wang, Haohan, Chen, Yiqiang, Yang, Qiang, Xie, Xing, Ji, Xiangyang
When personalized federated learning (FL) meets large foundation models, new challenges arise from various limitations in resources. In addition to typical limitations such as data, computation, and communication costs, access to the models is also often limited. This paper endeavors to solve both the challenges of limited resources and personalization. PFL that uses Zeroth-Order Optimization for Personalized Federated Learning. PFL avoids direct interference with the foundation models and instead learns to adapt its inputs through zeroth-order optimization. In addition, we employ simple yet effective linear projections to remap its predictions for personalization. To reduce the computation costs and enhance personalization, we propose input surgery to incorporate an auto-encoder with low-dimensional and client-specific embeddings. PFL to analyze its convergence. Extensive empirical experiments on computer vision and natural language processing tasks using popular foundation models demonstrate its effectiveness for FL on black-box foundation models. In recent years, the growing emphasis on data privacy and security has led to the emergence of federated learning (FL) (Warnat-Herresthal et al., 2021; Chen & Chao, 2022; Chen et al., 2023b; Castiglia et al., 2023; Rodríguez-Barroso et al., 2023; Kuang et al., 2023). FL enables collaborative learning while safeguarding data privacy and security across distributed clients (Yang et al., 2019). However, FL faces two key challenges: limited resources and distribution shifts (Figure 1 (a, b)). The rise of large foundation models (Bommasani et al., 2021) has amplified these challenges. The computational demands and communication costs associated with such models hinder the deployment of existing FL approaches (Figure 1a).
Learning Diverse Features in Vision Transformers for Improved Generalization
Nicolicioiu, Armand Mihai, Nicolicioiu, Andrei Liviu, Alexe, Bogdan, Teney, Damien
Deep learning models often rely only on a small set of features even when there is a rich set of predictive signals in the training data. This makes models brittle and sensitive to distribution shifts. In this work, we first examine vision transformers (ViTs) and find that they tend to extract robust and spurious features with distinct attention heads. As a result of this modularity, their performance under distribution shifts can be significantly improved at test time by pruning heads corresponding to spurious features, which we demonstrate using an "oracle selection" on validation data. Second, we propose a method to further enhance the diversity and complementarity of the learned features by encouraging orthogonality of the attention heads' input gradients. We observe improved out-of-distribution performance on diagnostic benchmarks (MNIST-CIFAR, Waterbirds) as a consequence of the enhanced diversity of features and the pruning of undesirable heads.