Goto

Collaborating Authors

 Sun, Wenbo


A Layered Multi-Expert Framework for Long-Context Mental Health Assessments

arXiv.org Artificial Intelligence

Long-form mental health assessments pose unique challenges for large language models (LLMs), which often exhibit hallucinations or inconsistent reasoning when handling extended, domain-specific contexts. We introduce Stacked Multi-Model Reasoning (SMMR), a layered framework that leverages multiple LLMs and specialized smaller models as coequal 'experts'. Early layers isolate short, discrete subtasks, while later layers integrate and refine these partial outputs through more advanced long-context models. We evaluate SMMR on the DAIC-WOZ depression-screening dataset and 48 curated case studies with psychiatric diagnoses, demonstrating consistent improvements over single-model baselines in terms of accuracy, F1-score, and PHQ-8 error reduction. By harnessing diverse 'second opinions', SMMR mitigates hallucinations, captures subtle clinical nuances, and enhances reliability in high-stakes mental health assessments. Our findings underscore the value of multi-expert frameworks for more trustworthy AI-driven screening.


Accessible and Portable LLM Inference by Compiling Computational Graphs into SQL

arXiv.org Artificial Intelligence

Serving large language models (LLMs) often demands specialized hardware, dedicated frameworks, and substantial development efforts, which restrict their accessibility, especially for edge devices and organizations with limited technical resources. We propose a novel compiler that translates LLM inference graphs into SQL queries, enabling relational databases, one of the most widely used and mature software systems globally, to serve as the runtime. By mapping neural operators such as matrix multiplication and attention into relational primitives like joins and aggregations, our approach leverages database capabilities, including disk-based data management and native caching. Supporting key transformer components, such as attention mechanisms and key-value caching, our system generates SQL pipelines for end-to-end LLM inference. Using the Llama3 family as a case study, we demonstrate up to 30x speedup in token generation for memory-constrained scenarios comparable to competitive CPU-based frameworks. Our work offers an accessible, portable, and efficient solution, facilitating the serving of LLMs across diverse deployment environments.


Ilargi: a GPU Compatible Factorized ML Model Training Framework

arXiv.org Artificial Intelligence

The machine learning (ML) training over disparate data sources traditionally involves materialization, which can impose substantial time and space overhead due to data movement and replication. Factorized learning, which leverages direct computation on disparate sources through linear algebra (LA) rewriting, has emerged as a viable alternative to improve computational efficiency. However, the adaptation of factorized learning to leverage the full capabilities of modern LA-friendly hardware like GPUs has been limited, often requiring manual intervention for algorithm compatibility. This paper introduces Ilargi, a novel factorized learning framework that utilizes matrix-represented data integration (DI) metadata to facilitate automatic factorization across CPU and GPU environments without the need for costly relational joins. Ilargi incorporates an ML-based cost estimator to intelligently selects between factorization and materialization based on data properties, algorithm complexity, hardware environments, and their interactions. This strategy ensures up to 8.9x speedups on GPUs and achieves over 20% acceleration in batch ML training workloads, thereby enhancing the practicability of ML training across diverse data integration scenarios and hardware platforms. To our knowledge, this work is the very first effort in GPU-compatible factorized learning.


KGIF: Optimizing Relation-Aware Recommendations with Knowledge Graph Information Fusion

arXiv.org Artificial Intelligence

While deep-learning-enabled recommender systems demonstrate strong performance benchmarks, many struggle to adapt effectively in real-world environments due to limited use of user-item relationship data and insufficient transparency in recommendation generation. Traditional collaborative filtering approaches fail to integrate multifaceted item attributes, and although Factorization Machines account for item-specific details, they overlook broader relational patterns. Collaborative knowledge graph-based models have progressed by embedding user-item interactions with item-attribute relationships, offering a holistic perspective on interconnected entities. However, these models frequently aggregate attribute and interaction data in an implicit manner, leaving valuable relational nuances underutilized. This study introduces the Knowledge Graph Attention Network with Information Fusion (KGIF), a specialized framework designed to merge entity and relation embeddings explicitly through a tailored self-attention mechanism. The KGIF framework integrates reparameterization via dynamic projection vectors, enabling embeddings to adaptively represent intricate relationships within knowledge graphs. This explicit fusion enhances the interplay between user-item interactions and item-attribute relationships, providing a nuanced balance between user-centric and item-centric representations. An attentive propagation mechanism further optimizes knowledge graph embeddings, capturing multi-layered interaction patterns. The contributions of this work include an innovative method for explicit information fusion, improved robustness for sparse knowledge graphs, and the ability to generate explainable recommendations through interpretable path visualization.


Uncertainty-Aware Out-of-Distribution Detection with Gaussian Processes

arXiv.org Machine Learning

Deep neural networks (DNNs) are often constructed under the closed-world assumption, which may fail to generalize to the out-of-distribution (OOD) data. This leads to DNNs producing overconfident wrong predictions and can result in disastrous consequences in safety-critical applications. Existing OOD detection methods mainly rely on curating a set of OOD data for model training or hyper-parameter tuning to distinguish OOD data from training data (also known as in-distribution data or InD data). However, OOD samples are not always available during the training phase in real-world applications, hindering the OOD detection accuracy. To overcome this limitation, we propose a Gaussian-process-based OOD detection method to establish a decision boundary based on InD data only. The basic idea is to perform uncertainty quantification of the unconstrained softmax scores of a DNN via a multi-class Gaussian process (GP), and then define a score function to separate InD and potential OOD data based on their fundamental differences in the posterior predictive distribution from the GP. Two case studies on conventional image classification datasets and real-world image datasets are conducted to demonstrate that the proposed method outperforms the state-of-the-art OOD detection methods when OOD samples are not observed in the training phase.


SouLLMate: An Application Enhancing Diverse Mental Health Support with Adaptive LLMs, Prompt Engineering, and RAG Techniques

arXiv.org Artificial Intelligence

Mental health issues significantly impact individuals' daily lives, yet many do not receive the help they need even with available online resources. This study aims to provide diverse, accessible, stigma-free, personalized, and real-time mental health support through cutting-edge AI technologies. It makes the following contributions: (1) Conducting an extensive survey of recent mental health support methods to identify prevalent functionalities and unmet needs. (2) Introducing SouLLMate, an adaptive LLM-driven system that integrates LLM technologies, Chain, Retrieval-Augmented Generation (RAG), prompt engineering, and domain knowledge. This system offers advanced features such as Risk Detection and Proactive Guidance Dialogue, and utilizes RAG for personalized profile uploads and Conversational Information Extraction. (3) Developing novel evaluation approaches for preliminary assessments and risk detection via professionally annotated interview data and real-life suicide tendency data. (4) Proposing the Key Indicator Summarization (KIS), Proactive Questioning Strategy (PQS), and Stacked Multi-Model Reasoning (SMMR) methods to enhance model performance and usability through context-sensitive response adjustments, semantic coherence evaluations, and enhanced accuracy of long-context reasoning in language models. This study contributes to advancing mental health support technologies, potentially improving the accessibility and effectiveness of mental health care globally.


CEBench: A Benchmarking Toolkit for the Cost-Effectiveness of LLM Pipelines

arXiv.org Artificial Intelligence

Online Large Language Model (LLM) services such as ChatGPT and Claude 3 have transformed business operations and academic research by effortlessly enabling new opportunities. However, due to data-sharing restrictions, sectors such as healthcare and finance prefer to deploy local LLM applications using costly hardware resources. This scenario requires a balance between the effectiveness advantages of LLMs and significant financial burdens. Additionally, the rapid evolution of models increases the frequency and redundancy of benchmarking efforts. Existing benchmarking toolkits, which typically focus on effectiveness, often overlook economic considerations, making their findings less applicable to practical scenarios. To address these challenges, we introduce CEBench, an open-source toolkit specifically designed for multi-objective benchmarking that focuses on the critical trade-offs between expenditure and effectiveness required for LLM deployments. CEBench allows for easy modifications through configuration files, enabling stakeholders to effectively assess and optimize these trade-offs. This strategic capability supports crucial decision-making processes aimed at maximizing effectiveness while minimizing cost impacts. By streamlining the evaluation process and emphasizing cost-effectiveness, CEBench seeks to facilitate the development of economically viable AI solutions across various industries and research fields. The code and demonstration are available in \url{https://github.com/amademicnoboday12/CEBench}.


Automatic Identification of Driving Maneuver Patterns using a Robust Hidden Semi-Markov Models

arXiv.org Machine Learning

There is an increase in interest to model driving maneuver patterns via the automatic unsupervised clustering of naturalistic sequential kinematic driving data. The patterns learned are often used in transportation research areas such as eco-driving, road safety, and intelligent vehicles. One such model capable of modeling these patterns is the Hierarchical Dirichlet Process Hidden Semi-Markov Model (HDP-HSMM), as it is often used to estimate data segmentation, state duration, and transition probabilities. While this model is a powerful tool for automatically clustering observed sequential data, the existing HDP-HSMM estimation suffers from an inherent tendency to overestimate the number of states. This can result in poor estimation, which can potentially impact impact transportation research through incorrect inference of driving patterns. In this paper, a new robust HDP-HSMM (rHDP-HSMM) method is proposed to reduce the number of redundant states and improve the consistency of the model's estimation. Both a simulation study and a case study using naturalistic driving data are presented to demonstrate the effectiveness of the proposed rHDP-HSMM in identifying and inference of driving maneuver patterns.


SEE-OoD: Supervised Exploration For Enhanced Out-of-Distribution Detection

arXiv.org Artificial Intelligence

Current techniques for Out-of-Distribution (OoD) detection predominantly rely on quantifying predictive uncertainty and incorporating model regularization during the training phase, using either real or synthetic OoD samples. However, methods that utilize real OoD samples lack exploration and are prone to overfit the OoD samples at hand. Whereas synthetic samples are often generated based on features extracted from training data, rendering them less effective when the training and OoD data are highly overlapped in the feature space. In this work, we propose a Wasserstein-score-based generative adversarial training scheme to enhance OoD detection accuracy, which, for the first time, performs data augmentation and exploration simultaneously under the supervision of limited OoD samples. Specifically, the generator explores OoD spaces and generates synthetic OoD samples using feedback from the discriminator, while the discriminator exploits both the observed and synthesized samples for OoD detection using a predefined Wasserstein score. We provide theoretical guarantees that the optimal solutions of our generative scheme are statistically achievable through adversarial training in empirical settings. We then demonstrate that the proposed method outperforms state-of-the-art techniques on various computer vision datasets and exhibits superior generalizability to unseen OoD data.


A Continual Learning Framework for Adaptive Defect Classification and Inspection

arXiv.org Artificial Intelligence

Recent development of advanced sensing and high computing technologies has enabled the wide adoption of machine vision to automatically inspect products' dimensional quality for efficient process control and reducing the manual inspection cost. The process control procedure requires effective data analysis methods to provide reliable inspection results. In this paper, we consider a high-volume manufacturing system that uses machine vision at the quality inspection station for automatic classification of product defects. Here classification implies both; identifying a defect and classifying its corresponding type. As a motivating example, we consider the scenario where batches of three-dimensional (3D) point cloud data are independently collected from a manufacturing process. The 3D point cloud data is obtained by measuring the 3D location of points on the product surface using a 3D scanner. The location measurements can then be used for fast classification of surface defects, and thus provide timely feedback for process control. Figure 1 (right) shows some exemplar surface defects on a wood product and the corresponding 3D point cloud measurements. The 3D point cloud measurements have a set of defining characteristics that should be considered in the development of defect classification techniques.