Goto

Collaborating Authors

 Shukla, Khemraj


A Neural Operator-Based Emulator for Regional Shallow Water Dynamics

arXiv.org Artificial Intelligence

Coastal regions are particularly vulnerable to the impacts of rising sea levels and extreme weather events. Accurate real-time forecasting of hydrodynamic processes in these areas is essential for infrastructure planning and climate adaptation. In this study, we present the Multiple-Input Temporal Operator Network (MITONet), a novel autoregressive neural emulator that employs dimensionality reduction to efficiently approximate high-dimensional numerical solvers for complex, nonlinear problems that are governed by time-dependent, parameterized partial differential equations. Although MITONet is applicable to a wide range of problems, we showcase its capabilities by forecasting regional tide-driven dynamics described by the two-dimensional shallow-water equations, while incorporating initial conditions, boundary conditions, and a varying domain parameter. We demonstrate MITONet's performance in a real-world application, highlighting its ability to make accurate predictions by extrapolating both in time and parametric space.


Which Optimizer Works Best for Physics-Informed Neural Networks and Kolmogorov-Arnold Networks?

arXiv.org Artificial Intelligence

Physics-Informed Neural Networks (PINNs) have revolutionized the computation of PDE solutions by integrating partial differential equations (PDEs) into the neural network's training process as soft constraints, becoming an important component of the scientific machine learning (SciML) ecosystem. In its current implementation, PINNs are mainly optimized using first-order methods like Adam, as well as quasi-Newton methods such as BFGS and its low-memory variant, L-BFGS. However, these optimizers often struggle with highly non-linear and non-convex loss landscapes, leading to challenges such as slow convergence, local minima entrapment, and (non)degenerate saddle points. In this study, we investigate the performance of Self-Scaled Broyden (SSBroyden) methods and other advanced quasi-Newton schemes, including BFGS and L-BFGS with different line search strategies approaches. These methods dynamically rescale updates based on historical gradient information, thus enhancing training efficiency and accuracy. We systematically compare these optimizers on key challenging linear, stiff, multi-scale and non-linear PDEs benchmarks, including the Burgers, Allen-Cahn, Kuramoto-Sivashinsky, and Ginzburg-Landau equations, and extend our study to Physics-Informed Kolmogorov-Arnold Networks (PIKANs) representation. Our findings provide insights into the effectiveness of second-order optimization strategies in improving the convergence and accurate generalization of PINNs for complex PDEs by orders of magnitude compared to the state-of-the-art.


A comprehensive and FAIR comparison between MLP and KAN representations for differential equations and operator networks

arXiv.org Artificial Intelligence

Kolmogorov-Arnold Networks (KANs) were recently introduced as an alternative representation model to MLP. Herein, we employ KANs to construct physics-informed machine learning models (PIKANs) and deep operator models (DeepOKANs) for solving differential equations for forward and inverse problems. In particular, we compare them with physics-informed neural networks (PINNs) and deep operator networks (DeepONets), which are based on the standard MLP representation. We find that although the original KANs based on the B-splines parameterization lack accuracy and efficiency, modified versions based on low-order orthogonal polynomials have comparable performance to PINNs and DeepONet although they still lack robustness as they may diverge for different random seeds or higher order orthogonal polynomials. We visualize their corresponding loss landscapes and analyze their learning dynamics using information bottleneck theory. Our study follows the FAIR principles so that other researchers can use our benchmarks to further advance this emerging topic.


Randomized Forward Mode of Automatic Differentiation For Optimization Algorithms

arXiv.org Artificial Intelligence

We present a randomized forward mode gradient (RFG) as an alternative to backpropagation. RFG is a random estimator for the gradient that is constructed based on the directional derivative along a random vector. The forward mode automatic differentiation (AD) provides an efficient computation of RFG. The probability distribution of the random vector determines the statistical properties of RFG. Through the second moment analysis, we found that the distribution with the smallest kurtosis yields the smallest expected relative squared error. By replacing gradient with RFG, a class of RFG-based optimization algorithms is obtained. By focusing on gradient descent (GD) and Polyak's heavy ball (PHB) methods, we present a convergence analysis of RFG-based optimization algorithms for quadratic functions. Computational experiments are presented to demonstrate the performance of the proposed algorithms and verify the theoretical findings.


Rethinking materials simulations: Blending direct numerical simulations with neural operators

arXiv.org Artificial Intelligence

Direct numerical simulations (DNS) are accurate but computationally expensive for predicting materials evolution across timescales, due to the complexity of the underlying evolution equations, the nature of multiscale spatio-temporal interactions, and the need to reach long-time integration. We develop a new method that blends numerical solvers with neural operators to accelerate such simulations. This methodology is based on the integration of a community numerical solver with a U-Net neural operator, enhanced by a temporal-conditioning mechanism that enables accurate extrapolation and efficient time-to-solution predictions of the dynamics. We demonstrate the effectiveness of this framework on simulations of microstructure evolution during physical vapor deposition modeled via the phase-field method. Such simulations exhibit high spatial gradients due to the co-evolution of different material phases with simultaneous slow and fast materials dynamics. We establish accurate extrapolation of the coupled solver with up to 16.5$\times$ speed-up compared to DNS. This methodology is generalizable to a broad range of evolutionary models, from solid mechanics, to fluid dynamics, geophysics, climate, and more.


Tackling the Curse of Dimensionality with Physics-Informed Neural Networks

arXiv.org Machine Learning

The curse-of-dimensionality taxes computational resources heavily with exponentially increasing computational cost as the dimension increases. This poses great challenges in solving high-dimensional PDEs, as Richard E. Bellman first pointed out over 60 years ago. While there has been some recent success in solving numerically partial differential equations (PDEs) in high dimensions, such computations are prohibitively expensive, and true scaling of general nonlinear PDEs to high dimensions has never been achieved. We develop a new method of scaling up physics-informed neural networks (PINNs) to solve arbitrary high-dimensional PDEs. The new method, called Stochastic Dimension Gradient Descent (SDGD), decomposes a gradient of PDEs into pieces corresponding to different dimensions and randomly samples a subset of these dimensional pieces in each iteration of training PINNs. We prove theoretically the convergence and other desired properties of the proposed method. We demonstrate in various diverse tests that the proposed method can solve many notoriously hard high-dimensional PDEs, including the Hamilton-Jacobi-Bellman (HJB) and the Schr\"{o}dinger equations in tens of thousands of dimensions very fast on a single GPU using the PINNs mesh-free approach. Notably, we solve nonlinear PDEs with nontrivial, anisotropic, and inseparable solutions in 100,000 effective dimensions in 12 hours on a single GPU using SDGD with PINNs. Since SDGD is a general training methodology of PINNs, it can be applied to any current and future variants of PINNs to scale them up for arbitrary high-dimensional PDEs.


AI-Aristotle: A Physics-Informed framework for Systems Biology Gray-Box Identification

arXiv.org Artificial Intelligence

Discovering mathematical equations that govern physical and biological systems from observed data is a fundamental challenge in scientific research. We present a new physics-informed framework for parameter estimation and missing physics identification (gray-box) in the field of Systems Biology. The proposed framework -- named AI-Aristotle -- combines eXtreme Theory of Functional Connections (X-TFC) domain-decomposition and Physics-Informed Neural Networks (PINNs) with symbolic regression (SR) techniques for parameter discovery and gray-box identification. We test the accuracy, speed, flexibility and robustness of AI-Aristotle based on two benchmark problems in Systems Biology: a pharmacokinetics drug absorption model, and an ultradian endocrine model for glucose-insulin interactions. We compare the two machine learning methods (X-TFC and PINNs), and moreover, we employ two different symbolic regression techniques to cross-verify our results. While the current work focuses on the performance of AI-Aristotle based on synthetic data, it can equally handle noisy experimental data and can even be used for black-box identification in just a few minutes on a laptop. More broadly, our work provides insights into the accuracy, cost, scalability, and robustness of integrating neural networks with symbolic regressors, offering a comprehensive guide for researchers tackling gray-box identification challenges in complex dynamical systems in biomedicine and beyond.


MyCrunchGPT: A chatGPT assisted framework for scientific machine learning

arXiv.org Artificial Intelligence

Scientific Machine Learning (SciML) has advanced recently across many different areas in computational science and engineering. The objective is to integrate data and physics seamlessly without the need of employing elaborate and computationally taxing data assimilation schemes. However, preprocessing, problem formulation, code generation, postprocessing and analysis are still time consuming and may prevent SciML from wide applicability in industrial applications and in digital twin frameworks. Here, we integrate the various stages of SciML under the umbrella of ChatGPT, to formulate MyCrunchGPT, which plays the role of a conductor orchestrating the entire workflow of SciML based on simple prompts by the user. Specifically, we present two examples that demonstrate the potential use of MyCrunchGPT in optimizing airfoils in aerodynamics, and in obtaining flow fields in various geometries in interactive mode, with emphasis on the validation stage. To demonstrate the flow of the MyCrunchGPT, and create an infrastructure that can facilitate a broader vision, we built a webapp based guided user interface, that includes options for a comprehensive summary report. The overall objective is to extend MyCrunchGPT to handle diverse problems in computational mechanics, design, optimization and controls, and general scientific computing tasks involved in SciML, hence using it as a research assistant tool but also as an educational tool. While here the examples focus in fluid mechanics, future versions will target solid mechanics and materials science, geophysics, systems biology and bioinformatics.


Characterization of partial wetting by CMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs

arXiv.org Artificial Intelligence

The molten sand, a mixture of calcia, magnesia, alumina, and silicate, known as CMAS, is characterized by its high viscosity, density, and surface tension. The unique properties of CMAS make it a challenging material to deal with in high-temperature applications, requiring innovative solutions and materials to prevent its buildup and damage to critical equipment. Here, we use multiphase many-body dissipative particle dynamics (mDPD) simulations to study the wetting dynamics of highly viscous molten CMAS droplets. The simulations are performed in three dimensions, with varying initial droplet sizes and equilibrium contact angles. We propose a coarse parametric ordinary differential equation (ODE) that captures the spreading radius behavior of the CMAS droplets. The ODE parameters are then identified based on the Physics-Informed Neural Network (PINN) framework. Subsequently, the closed form dependency of parameter values found by PINN on the initial radii and contact angles are given using symbolic regression. Finally, we employ Bayesian PINNs (B-PINNs) to assess and quantify the uncertainty associated with the discovered parameters. In brief, this study provides insight into spreading dynamics of CMAS droplets by fusing simple parametric ODE modeling and state-of-the-art machine learning techniques.


A Framework Based on Symbolic Regression Coupled with eXtended Physics-Informed Neural Networks for Gray-Box Learning of Equations of Motion from Data

arXiv.org Artificial Intelligence

We propose a framework and an algorithm to uncover the unknown parts of nonlinear equations directly from data. The framework is based on eXtended Physics-Informed Neural Networks (X-PINNs), domain decomposition in space-time, but we augment the original X-PINN method by imposing flux continuity across the domain interfaces. The well-known Allen-Cahn equation is used to demonstrate the approach. The Frobenius matrix norm is used to evaluate the accuracy of the X-PINN predictions and the results show excellent performance. In addition, symbolic regression is employed to determine the closed form of the unknown part of the equation from the data, and the results confirm the accuracy of the X-PINNs based approach. To test the framework in a situation resembling real-world data, random noise is added to the datasets to mimic scenarios such as the presence of thermal noise or instrument errors. The results show that the framework is stable against significant amount of noise. As the final part, we determine the minimal amount of data required for training the neural network. The framework is able to predict the correct form and coefficients of the underlying dynamical equation when at least 50\% data is used for training.