Shetty, Abhishek
Low-Rank Thinning
Carrell, Annabelle Michael, Gong, Albert, Shetty, Abhishek, Dwivedi, Raaz, Mackey, Lester
The goal in thinning is to summarize a dataset using a small set of representative points. Remarkably, sub-Gaussian thinning algorithms like Kernel Halving and Compress can match the quality of uniform subsampling while substantially reducing the number of summary points. However, existing guarantees cover only a restricted range of distributions and kernel-based quality measures and suffer from pessimistic dimension dependence. To address these deficiencies, we introduce a new low-rank analysis of sub-Gaussian thinning that applies to any distribution and any kernel, guaranteeing high-quality compression whenever the kernel or data matrix is approximately low-rank. To demonstrate the broad applicability of the techniques, we design practical sub-Gaussian thinning approaches that improve upon the best known guarantees for approximating attention in transformers, accelerating stochastic gradient training through reordering, and distinguishing distributions in near-linear time.
Small Loss Bounds for Online Learning Separated Function Classes: A Gaussian Process Perspective
Block, Adam, Shetty, Abhishek
In order to develop practical and efficient algorithms while circumventing overly pessimistic computational lower bounds, recent work has been interested in developing oracle-efficient algorithms in a variety of learning settings. Two such settings of particular interest are online and differentially private learning. While seemingly different, these two fields are fundamentally connected by the requirement that successful algorithms in each case satisfy stability guarantees; in particular, recent work has demonstrated that algorithms for online learning whose performance adapts to beneficial problem instances, attaining the so-called small-loss bounds, require a form of stability similar to that of differential privacy. In this work, we identify the crucial role that separation plays in allowing oracle-efficient algorithms to achieve this strong stability. Our notion, which we term $\rho$-separation, generalizes and unifies several previous approaches to enforcing this strong stability, including the existence of small-separator sets and the recent notion of $\gamma$-approximability. We present an oracle-efficient algorithm that is capable of achieving small-loss bounds with improved rates in greater generality than previous work, as well as a variant for differentially private learning that attains optimal rates, again under our separation condition. In so doing, we prove a new stability result for minimizers of a Gaussian process that strengthens and generalizes previous work.
Tolerant Algorithms for Learning with Arbitrary Covariate Shift
Goel, Surbhi, Shetty, Abhishek, Stavropoulos, Konstantinos, Vasilyan, Arsen
We study the problem of learning under arbitrary distribution shift, where the learner is trained on a labeled set from one distribution but evaluated on a different, potentially adversarially generated test distribution. We focus on two frameworks: PQ learning [Goldwasser, A. Kalai, Y. Kalai, Montasser NeurIPS 2020], allowing abstention on adversarially generated parts of the test distribution, and TDS learning [Klivans, Stavropoulos, Vasilyan COLT 2024], permitting abstention on the entire test distribution if distribution shift is detected. All prior known algorithms either rely on learning primitives that are computationally hard even for simple function classes, or end up abstaining entirely even in the presence of a tiny amount of distribution shift. We address both these challenges for natural function classes, including intersections of halfspaces and decision trees, and standard training distributions, including Gaussians. For PQ learning, we give efficient learning algorithms, while for TDS learning, our algorithms can tolerate moderate amounts of distribution shift. At the core of our approach is an improved analysis of spectral outlier-removal techniques from learning with nasty noise. Our analysis can (1) handle arbitrarily large fraction of outliers, which is crucial for handling arbitrary distribution shifts, and (2) obtain stronger bounds on polynomial moments of the distribution after outlier removal, yielding new insights into polynomial regression under distribution shifts. Lastly, our techniques lead to novel results for tolerant testable learning [Rubinfeld and Vasilyan STOC 2023], and learning with nasty noise.
On the Performance of Empirical Risk Minimization with Smoothed Data
Block, Adam, Rakhlin, Alexander, Shetty, Abhishek
In order to circumvent statistical and computational hardness results in sequential decision-making, recent work has considered smoothed online learning, where the distribution of data at each time is assumed to have bounded likeliehood ratio with respect to a base measure when conditioned on the history. While previous works have demonstrated the benefits of smoothness, they have either assumed that the base measure is known to the learner or have presented computationally inefficient algorithms applying only in special cases. This work investigates the more general setting where the base measure is \emph{unknown} to the learner, focusing in particular on the performance of Empirical Risk Minimization (ERM) with square loss when the data are well-specified and smooth. We show that in this setting, ERM is able to achieve sublinear error whenever a class is learnable with iid data; in particular, ERM achieves error scaling as $\tilde O( \sqrt{\mathrm{comp}(\mathcal F)\cdot T} )$, where $\mathrm{comp}(\mathcal F)$ is the statistical complexity of learning $\mathcal F$ with iid data. In so doing, we prove a novel norm comparison bound for smoothed data that comprises the first sharp norm comparison for dependent data applying to arbitrary, nonlinear function classes. We complement these results with a lower bound indicating that our analysis of ERM is essentially tight, establishing a separation in the performance of ERM between smoothed and iid data.
Oracle-Efficient Differentially Private Learning with Public Data
Block, Adam, Bun, Mark, Desai, Rathin, Shetty, Abhishek, Wu, Steven
Due to statistical lower bounds on the learnability of many function classes under privacy constraints, there has been recent interest in leveraging public data to improve the performance of private learning algorithms. In this model, algorithms must always guarantee differential privacy with respect to the private samples while also ensuring learning guarantees when the private data distribution is sufficiently close to that of the public data. Previous work has demonstrated that when sufficient public, unlabelled data is available, private learning can be made statistically tractable, but the resulting algorithms have all been computationally inefficient. In this work, we present the first computationally efficient, algorithms to provably leverage public data to learn privately whenever a function class is learnable non-privately, where our notion of computational efficiency is with respect to the number of calls to an optimization oracle for the function class. In addition to this general result, we provide specialized algorithms with improved sample complexities in the special cases when the function class is convex or when the task is binary classification.
Omnipredictors for Regression and the Approximate Rank of Convex Functions
Gopalan, Parikshit, Okoroafor, Princewill, Raghavendra, Prasad, Shetty, Abhishek, Singhal, Mihir
Consider the supervised learning setting where the goal is to learn to predict labels $\mathbf y$ given points $\mathbf x$ from a distribution. An \textit{omnipredictor} for a class $\mathcal L$ of loss functions and a class $\mathcal C$ of hypotheses is a predictor whose predictions incur less expected loss than the best hypothesis in $\mathcal C$ for every loss in $\mathcal L$. Since the work of [GKR+21] that introduced the notion, there has been a large body of work in the setting of binary labels where $\mathbf y \in \{0, 1\}$, but much less is known about the regression setting where $\mathbf y \in [0,1]$ can be continuous. Our main conceptual contribution is the notion of \textit{sufficient statistics} for loss minimization over a family of loss functions: these are a set of statistics about a distribution such that knowing them allows one to take actions that minimize the expected loss for any loss in the family. The notion of sufficient statistics relates directly to the approximate rank of the family of loss functions. Our key technical contribution is a bound of $O(1/\varepsilon^{2/3})$ on the $\epsilon$-approximate rank of convex, Lipschitz functions on the interval $[0,1]$, which we show is tight up to a factor of $\mathrm{polylog} (1/\epsilon)$. This yields improved runtimes for learning omnipredictors for the class of all convex, Lipschitz loss functions under weak learnability assumptions about the class $\mathcal C$. We also give efficient omnipredictors when the loss families have low-degree polynomial approximations, or arise from generalized linear models (GLMs). This translation from sufficient statistics to faster omnipredictors is made possible by lifting the technique of loss outcome indistinguishability introduced by [GKH+23] for Boolean labels to the regression setting.
Progressive Ensemble Distillation: Building Ensembles for Efficient Inference
Dennis, Don Kurian, Shetty, Abhishek, Sevekari, Anish, Koishida, Kazuhito, Smith, Virginia
We study the problem of progressive ensemble distillation: Given a large, pretrained teacher model $g$, we seek to decompose the model into smaller, low-inference cost student models $f_i$, such that progressively evaluating additional models in this ensemble leads to improved predictions. The resulting ensemble allows for flexibly tuning accuracy vs. inference cost at runtime, which is useful for a number of applications in on-device inference. The method we propose, B-DISTIL , relies on an algorithmic procedure that uses function composition over intermediate activations to construct expressive ensembles with similar performance as $g$ , but with smaller student models. We demonstrate the effectiveness of B-DISTIL by decomposing pretrained models across standard image, speech, and sensor datasets. We also provide theoretical guarantees in terms of convergence and generalization.
Smooth Nash Equilibria: Algorithms and Complexity
Daskalakis, Constantinos, Golowich, Noah, Haghtalab, Nika, Shetty, Abhishek
A fundamental shortcoming of the concept of Nash equilibrium is its computational intractability: approximating Nash equilibria in normal-form games is PPAD-hard. In this paper, inspired by the ideas of smoothed analysis, we introduce a relaxed variant of Nash equilibrium called $\sigma$-smooth Nash equilibrium, for a smoothness parameter $\sigma$. In a $\sigma$-smooth Nash equilibrium, players only need to achieve utility at least as high as their best deviation to a $\sigma$-smooth strategy, which is a distribution that does not put too much mass (as parametrized by $\sigma$) on any fixed action. We distinguish two variants of $\sigma$-smooth Nash equilibria: strong $\sigma$-smooth Nash equilibria, in which players are required to play $\sigma$-smooth strategies under equilibrium play, and weak $\sigma$-smooth Nash equilibria, where there is no such requirement. We show that both weak and strong $\sigma$-smooth Nash equilibria have superior computational properties to Nash equilibria: when $\sigma$ as well as an approximation parameter $\epsilon$ and the number of players are all constants, there is a constant-time randomized algorithm to find a weak $\epsilon$-approximate $\sigma$-smooth Nash equilibrium in normal-form games. In the same parameter regime, there is a polynomial-time deterministic algorithm to find a strong $\epsilon$-approximate $\sigma$-smooth Nash equilibrium in a normal-form game. These results stand in contrast to the optimal algorithm for computing $\epsilon$-approximate Nash equilibria, which cannot run in faster than quasipolynomial-time. We complement our upper bounds by showing that when either $\sigma$ or $\epsilon$ is an inverse polynomial, finding a weak $\epsilon$-approximate $\sigma$-smooth Nash equilibria becomes computationally intractable.
Adversarial Resilience in Sequential Prediction via Abstention
Goel, Surbhi, Hanneke, Steve, Moran, Shay, Shetty, Abhishek
We study the problem of sequential prediction in the stochastic setting with an adversary that is allowed to inject clean-label adversarial (or out-of-distribution) examples. Algorithms designed to handle purely stochastic data tend to fail in the presence of such adversarial examples, often leading to erroneous predictions. This is undesirable in many high-stakes applications such as medical recommendations, where abstaining from predictions on adversarial examples is preferable to misclassification. On the other hand, assuming fully adversarial data leads to very pessimistic bounds that are often vacuous in practice. To capture this motivation, we propose a new model of sequential prediction that sits between the purely stochastic and fully adversarial settings by allowing the learner to abstain from making a prediction at no cost on adversarial examples. Assuming access to the marginal distribution on the non-adversarial examples, we design a learner whose error scales with the VC dimension (mirroring the stochastic setting) of the hypothesis class, as opposed to the Littlestone dimension which characterizes the fully adversarial setting. Furthermore, we design a learner for VC dimension~1 classes, which works even in the absence of access to the marginal distribution. Our key technical contribution is a novel measure for quantifying uncertainty for learning VC classes, which may be of independent interest.
Optimal PAC Bounds Without Uniform Convergence
Aden-Ali, Ishaq, Cherapanamjeri, Yeshwanth, Shetty, Abhishek, Zhivotovskiy, Nikita
In statistical learning theory, determining the sample complexity of realizable binary classification for VC classes was a long-standing open problem. The results of Simon and Hanneke established sharp upper bounds in this setting. However, the reliance of their argument on the uniform convergence principle limits its applicability to more general learning settings such as multiclass classification. In this paper, we address this issue by providing optimal high probability risk bounds through a framework that surpasses the limitations of uniform convergence arguments. Our framework converts the leave-one-out error of permutation invariant predictors into high probability risk bounds. As an application, by adapting the one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth, we propose an algorithm that achieves an optimal PAC bound for binary classification. Specifically, our result shows that certain aggregations of one-inclusion graph algorithms are optimal, addressing a variant of a classic question posed by Warmuth. We further instantiate our framework in three settings where uniform convergence is provably suboptimal. For multiclass classification, we prove an optimal risk bound that scales with the one-inclusion hypergraph density of the class, addressing the suboptimality of the analysis of Daniely and Shalev-Shwartz. For partial hypothesis classification, we determine the optimal sample complexity bound, resolving a question posed by Alon, Hanneke, Holzman, and Moran. For realizable bounded regression with absolute loss, we derive an optimal risk bound that relies on a modified version of the scale-sensitive dimension, refining the results of Bartlett and Long. Our rates surpass standard uniform convergence-based results due to the smaller complexity measure in our risk bound.