Goto

Collaborating Authors

 Sarathy, Vasanth


Analogical Reasoning Within a Conceptual Hyperspace

arXiv.org Artificial Intelligence

We propose an approach to analogical inference that marries the neuro-symbolic computational power of complex-sampled hyperdimensional computing (HDC) with Conceptual Spaces Theory (CST), a promising theory of semantic meaning. CST sketches, at an abstract level, approaches to analogical inference that go beyond the standard predicate-based structure mapping theories. But it does not describe how such an approach can be operationalized. We propose a concrete HDC-based architecture that computes several types of analogy classified by CST. We present preliminary proof-of-concept experimental results within a toy domain and describe how it can perform category-based and property-based analogical reasoning.


Large Language Models Know What To Say But Not When To Speak

arXiv.org Artificial Intelligence

Turn-taking is a fundamental mechanism in human communication that ensures smooth and coherent verbal interactions. Recent advances in Large Language Models (LLMs) have motivated their use in improving the turn-taking capabilities of Spoken Dialogue Systems (SDS), such as their ability to respond at appropriate times. However, existing models often struggle to predict opportunities for speaking -- called Transition Relevance Places (TRPs) -- in natural, unscripted conversations, focusing only on turn-final TRPs and not within-turn TRPs. To address these limitations, we introduce a novel dataset of participant-labeled within-turn TRPs and use it to evaluate the performance of state-of-the-art LLMs in predicting opportunities for speaking. Our experiments reveal the current limitations of LLMs in modeling unscripted spoken interactions, highlighting areas for improvement and paving the way for more naturalistic dialogue systems.


"Let's Argue Both Sides": Argument Generation Can Force Small Models to Utilize Previously Inaccessible Reasoning Capabilities

arXiv.org Artificial Intelligence

Large Language Models (LLMs), despite achieving state-of-the-art results in a number of evaluation tasks, struggle to maintain their performance when logical reasoning is strictly required to correctly infer a prediction. In this work, we propose Argument Generation as a method of forcing models to utilize their reasoning capabilities when other approaches such as chain-of-thought reasoning prove insufficient. Our method involves the generation of arguments for each possible inference result, and asking the end model to rank the generated arguments. We show that Argument Generation can serve as an appropriate substitute for zero-shot prompting techniques without the requirement to add layers of complexity. Furthermore, we argue that knowledge-probing techniques such as chain-of-thought reasoning and Argument Generation are only useful when further reasoning is required to infer a prediction, making them auxiliary to more common zero-shot approaches. Finally, we demonstrate that our approach forces larger gains in smaller language models, showcasing a complex relationship between model size and prompting methods in foundation models.


LgTS: Dynamic Task Sampling using LLM-generated sub-goals for Reinforcement Learning Agents

arXiv.org Artificial Intelligence

Recent advancements in reasoning abilities of Large Language Models (LLM) has promoted their usage in problems that require high-level planning for robots and artificial agents. However, current techniques that utilize LLMs for such planning tasks make certain key assumptions such as, access to datasets that permit finetuning, meticulously engineered prompts that only provide relevant and essential information to the LLM, and most importantly, a deterministic approach to allow execution of the LLM responses either in the form of existing policies or plan operators. In this work, we propose LgTS (LLM-guided Teacher-Student learning), a novel approach that explores the planning abilities of LLMs to provide a graphical representation of the sub-goals to a reinforcement learning (RL) agent that does not have access to the transition dynamics of the environment. The RL agent uses Teacher-Student learning algorithm to learn a set of successful policies for reaching the goal state from the start state while simultaneously minimizing the number of environmental interactions. Unlike previous methods that utilize LLMs, our approach does not assume access to a propreitary or a fine-tuned LLM, nor does it require pre-trained policies that achieve the sub-goals proposed by the LLM. Through experiments on a gridworld based DoorKey domain and a search-and-rescue inspired domain, we show that generating a graphical structure of sub-goals helps in learning policies for the LLM proposed sub-goals and the Teacher-Student learning algorithm minimizes the number of environment interactions when the transition dynamics are unknown.


SPOTTER: Extending Symbolic Planning Operators through Targeted Reinforcement Learning

arXiv.org Artificial Intelligence

Symbolic planning models allow decision-making agents to sequence actions in arbitrary ways to achieve a variety of goals in dynamic domains. However, they are typically handcrafted and tend to require precise formulations that are not robust to human error. Reinforcement learning (RL) approaches do not require such models, and instead learn domain dynamics by exploring the environment and collecting rewards. However, RL approaches tend to require millions of episodes of experience and often learn policies that are not easily transferable to other tasks. In this paper, we address one aspect of the open problem of integrating these approaches: how can decision-making agents resolve discrepancies in their symbolic planning models while attempting to accomplish goals? We propose an integrated framework named SPOTTER that uses RL to augment and support ("spot") a planning agent by discovering new operators needed by the agent to accomplish goals that are initially unreachable for the agent. SPOTTER outperforms pure-RL approaches while also discovering transferable symbolic knowledge and does not require supervision, successful plan traces or any a priori knowledge about the missing planning operator.


Quasi-Dilemmas for Artificial Moral Agents

arXiv.org Artificial Intelligence

In this paper we describe moral quasi-dilemmas (MQDs): situations similar to moral dilemmas, but in which an agent is unsure whether exploring the plan space or the world may reveal a course of action that satisfies all moral requirements. We argue that artificial moral agents (AMAs) should be built to handle MQDs (in particular, by exploring the plan space rather than immediately accepting the inevitability of the moral dilemma), and that MQDs may be useful for evaluating AMA architectures.