Goto

Collaborating Authors

Sap, Maarten


Documenting the English Colossal Clean Crawled Corpus

arXiv.org Artificial Intelligence

As language models are trained on ever more text, researchers are turning to some of the largest corpora available. Unlike most other types of datasets in NLP, large unlabeled text corpora are often presented with minimal documentation, and best practices for documenting them have not been established. In this work we provide the first documentation for the Colossal Clean Crawled Corpus (C4; Raffel et al., 2020), a dataset created by applying a set of filters to a single snapshot of Common Crawl. We begin with a high-level summary of the data, including distributions of where the text came from and when it was written. We then give more detailed analysis on salient parts of this data, including the most frequent sources of text (e.g., patents.google.com, which contains a significant percentage of machine translated and/or OCR'd text), the effect that the filters had on the data (they disproportionately remove text in AAE), and evidence that some other benchmark NLP dataset examples are contained in the text. We release a web interface to an interactive, indexed copy of this dataset, encouraging the community to continuously explore and report additional findings.


Social Chemistry 101: Learning to Reason about Social and Moral Norms

arXiv.org Artificial Intelligence

Social norms---the unspoken commonsense rules about acceptable social behavior---are crucial in understanding the underlying causes and intents of people's actions in narratives. For example, underlying an action such as "wanting to call cops on my neighbors" are social norms that inform our conduct, such as "It is expected that you report crimes." We present Social Chemistry, a new conceptual formalism to study people's everyday social norms and moral judgments over a rich spectrum of real life situations described in natural language. We introduce Social-Chem-101, a large-scale corpus that catalogs 292k rules-of-thumb such as "it is rude to run a blender at 5am" as the basic conceptual units. Each rule-of-thumb is further broken down with 12 different dimensions of people's judgments, including social judgments of good and bad, moral foundations, expected cultural pressure, and assumed legality, which together amount to over 4.5 million annotations of categorical labels and free-text descriptions. Comprehensive empirical results based on state-of-the-art neural models demonstrate that computational modeling of social norms is a promising research direction. Our model framework, Neural Norm Transformer, learns and generalizes Social-Chem-101 to successfully reason about previously unseen situations, generating relevant (and potentially novel) attribute-aware social rules-of-thumb.


PowerTransformer: Unsupervised Controllable Revision for Biased Language Correction

arXiv.org Artificial Intelligence

Unconscious biases continue to be prevalent in modern text and media, calling for algorithms that can assist writers with bias correction. For example, a female character in a story is often portrayed as passive and powerless ("She daydreams about being a doctor") while a man is portrayed as more proactive and powerful ("He pursues his dream of being a doctor"). We formulate *Controllable Debiasing*, a new revision task that aims to rewrite a given text to correct the implicit and potentially undesirable bias in character portrayals. We then introduce PowerTransformer as an approach that debiases text through the lens of connotation frames (Sap et al., 2017), which encode pragmatic knowledge of implied power dynamics with respect to verb predicates. One key challenge of our task is the lack of parallel corpora. To address this challenge, we adopt an unsupervised approach using auxiliary supervision with related tasks such as paraphrasing and self-supervision based on a reconstruction loss, building on pretrained language models. Through comprehensive experiments based on automatic and human evaluations, we demonstrate that our approach outperforms ablations and existing methods from related tasks. Furthermore, we demonstrate the use of PowerTransformer as a step toward mitigating the well-documented gender bias in character portrayal in movie scripts.


COMET: Commonsense Transformers for Automatic Knowledge Graph Construction

arXiv.org Artificial Intelligence

We present the first comprehensive study on automatic knowledge base construction for two prevalent commonsense knowledge graphs: ATOMIC (Sap et al., 2019) and ConceptNet (Speer et al., 2017). Contrary to many conventional KBs that store knowledge with canonical templates, commonsense KBs only store loosely structured open-text descriptions of knowledge. We posit that an important step toward automatic commonsense completion is the development of generative models of commonsense knowledge, and propose COMmonsEnse Transformers (COMET) that learn to generate rich and diverse commonsense descriptions in natural language. Despite the challenges of commonsense modeling, our investigation reveals promising results when implicit knowledge from deep pre-trained language models is transferred to generate explicit knowledge in commonsense knowledge graphs. Empirical results demonstrate that COMET is able to generate novel knowledge that humans rate as high quality, with up to 77.5% (ATOMIC) and 91.7% (ConceptNet) precision at top 1, which approaches human performance for these resources. Our findings suggest that using generative commonsense models for automatic commonsense KB completion could soon be a plausible alternative to extractive methods.


Sounding Board: A User-Centric and Content-Driven Social Chatbot

arXiv.org Artificial Intelligence

We present Sounding Board, a social chatbot that won the 2017 Amazon Alexa Prize. The system architecture consists of several components including spoken language processing, dialogue management, language generation, and content management, with emphasis on user-centric and content-driven design. We also share insights gained from large-scale online logs based on 160,000 conversations with real-world users.