Sakurai, Tetsuya
Anomaly Detection in Double-entry Bookkeeping Data by Federated Learning System with Non-model Sharing Approach
Mashiko, Sota, Kawamata, Yuji, Nakayama, Tomoru, Sakurai, Tetsuya, Okada, Yukihiko
Anomaly detection is crucial in financial auditing and effective detection often requires obtaining large volumes of data from multiple organizations. However, confidentiality concerns hinder data sharing among audit firms. Although the federated learning (FL)-based approach, FedAvg, has been proposed to address this challenge, its use of mutiple communication rounds increases its overhead, limiting its practicality. In this study, we propose a novel framework employing Data Collaboration (DC) analysis -- a non-model share-type FL method -- to streamline model training into a single communication round. Our method first encodes journal entry data via dimensionality reduction to obtain secure intermediate representations, then transforms them into collaboration representations for building an autoencoder that detects anomalies. We evaluate our approach on a synthetic dataset and real journal entry data from multiple organizations. The results show that our method not only outperforms single-organization baselines but also exceeds FedAvg in non-i.i.d. experiments on real journal entry data that closely mirror real-world conditions. By preserving data confidentiality and reducing iterative communication, this study addresses a key auditing challenge -- ensuring data confidentiality while integrating knowledge from multiple audit firms. Our findings represent a significant advance in artificial intelligence-driven auditing and underscore the potential of FL methods in high-security domains.
FedDCL: a federated data collaboration learning as a hybrid-type privacy-preserving framework based on federated learning and data collaboration
Imakura, Akira, Sakurai, Tetsuya
Recently, federated learning has attracted much attention as a privacy-preserving integrated analysis that enables integrated analysis of data held by multiple institutions without sharing raw data. On the other hand, federated learning requires iterative communication across institutions and has a big challenge for implementation in situations where continuous communication with the outside world is extremely difficult. In this study, we propose a federated data collaboration learning (FedDCL), which solves such communication issues by combining federated learning with recently proposed non-model share-type federated learning named as data collaboration analysis. In the proposed FedDCL framework, each user institution independently constructs dimensionality-reduced intermediate representations and shares them with neighboring institutions on intra-group DC servers. On each intra-group DC server, intermediate representations are transformed to incorporable forms called collaboration representations. Federated learning is then conducted between intra-group DC servers. The proposed FedDCL framework does not require iterative communication by user institutions and can be implemented in situations where continuous communication with the outside world is extremely difficult. The experimental results show that the performance of the proposed FedDCL is comparable to that of existing federated learning.
MoFormer: Multi-objective Antimicrobial Peptide Generation Based on Conditional Transformer Joint Multi-modal Fusion Descriptor
Wang, Li, Fu, Xiangzheng, Yang, Jiahao, Zhang, Xinyi, Ye, Xiucai, Liu, Yiping, Sakurai, Tetsuya, Zeng, Xiangxiang
Deep learning holds a big promise for optimizing existing peptides with more desirable properties, a critical step towards accelerating new drug discovery. Despite the recent emergence of several optimized Antimicrobial peptides(AMP) generation methods, multi-objective optimizations remain still quite challenging for the idealism-realism tradeoff. Here, we establish a multi-objective AMP synthesis pipeline (MoFormer) for the simultaneous optimization of multi-attributes of AMPs. MoFormer improves the desired attributes of AMP sequences in a highly structured latent space, guided by conditional constraints and fine-grained multi-descriptor.We show that MoFormer outperforms existing methods in the generation task of enhanced antimicrobial activity and minimal hemolysis. We also utilize a Pareto-based non-dominated sorting algorithm and proxies based on large model fine-tuning to hierarchically rank the candidates. We demonstrate substantial property improvement using MoFormer from two perspectives: (1) employing molecular simulations and scoring interactions among amino acids to decipher the structure and functionality of AMPs; (2) visualizing latent space to examine the qualities and distribution features, verifying an effective means to facilitate multi-objective optimization AMPs with design constraints.
Estimation of conditional average treatment effects on distributed data: A privacy-preserving approach
Kawamata, Yuji, Motai, Ryoki, Okada, Yukihiko, Imakura, Akira, Sakurai, Tetsuya
Estimation of conditional average treatment effects (CATEs) is an important topic in various fields such as medical and social sciences. CATEs can be estimated with high accuracy if distributed data across multiple parties can be centralized. However, it is difficult to aggregate such data if they contain privacy information. To address this issue, we proposed data collaboration double machine learning (DC-DML), a method that can estimate CATE models with privacy preservation of distributed data, and evaluated the method through numerical experiments. Our contributions are summarized in the following three points. First, our method enables estimation and testing of semi-parametric CATE models without iterative communication on distributed data. Semi-parametric or non-parametric CATE models enable estimation and testing that is more robust to model mis-specification than parametric models. However, to our knowledge, no communication-efficient method has been proposed for estimating and testing semi-parametric or non-parametric CATE models on distributed data. Second, our method enables collaborative estimation between different parties as well as multiple time points because the dimensionality-reduced intermediate representations can be accumulated. Third, our method performed as well or better than other methods in evaluation experiments using synthetic, semi-synthetic and real-world datasets.
Collaborative causal inference on distributed data
Kawamata, Yuji, Motai, Ryoki, Okada, Yukihiko, Imakura, Akira, Sakurai, Tetsuya
In recent years, the development of technologies for causal inference with privacy preservation of distributed data has gained considerable attention. Many existing methods for distributed data focus on resolving the lack of subjects (samples) and can only reduce random errors in estimating treatment effects. In this study, we propose a data collaboration quasi-experiment (DC-QE) that resolves the lack of both subjects and covariates, reducing random errors and biases in the estimation. Our method involves constructing dimensionality-reduced intermediate representations from private data from local parties, sharing intermediate representations instead of private data for privacy preservation, estimating propensity scores from the shared intermediate representations, and finally, estimating the treatment effects from propensity scores. Through numerical experiments on both artificial and real-world data, we confirm that our method leads to better estimation results than individual analyses. While dimensionality reduction loses some information in the private data and causes performance degradation, we observe that sharing intermediate representations with many parties to resolve the lack of subjects and covariates sufficiently improves performance to overcome the degradation caused by dimensionality reduction. Although external validity is not necessarily guaranteed, our results suggest that DC-QE is a promising method. With the widespread use of our method, intermediate representations can be published as open data to help researchers find causalities and accumulate a knowledge base.
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Nguyen, Dai Hai, Sakurai, Tetsuya, Mamitsuka, Hiroshi
Many machine learning problems involve the challenge of approximating an intractable target distribution, which might only be known up to a normalization constant. Bayesian inference is a typical example, where the intractable and unnormalized target distribution is a result of the product of the prior and likelihood functions (see [11, 18, 4]). Variational Inference (VI), a widely employed across various application domains, seeks to approximate this intractable target distribution by utilizing a variational distribution (see [3, 7, 20] and references therein). VI is typically formulated as an optimization problem, with the objective of maximizing the evidence lower bound objective (ELBO), which is equivalent to minimizing the Kullback-Leiber (KL) divergence between the variational distribution and the target distribution. The conventional method for maximizing the ELBO involves the use of gradient descent, such as black-box VI (BBVI, [16]). The gradient of the ELBO can be expressed as an expectation over the variational distribution, which is typically estimated by Monte Carlo samples from this distribution.
Data Collaboration Analysis applied to Compound Datasets and the Introduction of Projection data to Non-IID settings
Mizoguchi, Akihiro, Bogdanova, Anna, Imakura, Akira, Sakurai, Tetsuya
Given the time and expense associated with bringing a drug to market, numerous studies have been conducted to predict the properties of compounds based on their structure using machine learning. Federated learning has been applied to compound datasets to increase their prediction accuracy while safeguarding potentially proprietary information. However, federated learning is encumbered by low accuracy in not identically and independently distributed (non-IID) settings, i.e., data partitioning has a large label bias, and is considered unsuitable for compound datasets, which tend to have large label bias. To address this limitation, we utilized an alternative method of distributed machine learning to chemical compound data from open sources, called data collaboration analysis (DC). We also proposed data collaboration analysis using projection data (DCPd), which is an improved method that utilizes auxiliary PubChem data. This improves the quality of individual user-side data transformations for the projection data for the creation of intermediate representations. The classification accuracy, i.e., area under the curve in the receiver operating characteristic curve (ROC-AUC) and AUC in the precision-recall curve (PR-AUC), of federated averaging (FedAvg), DC, and DCPd was compared for five compound datasets. We determined that the machine learning performance for non-IID settings was in the order of DCPd, DC, and FedAvg, although they were almost the same in identically and independently distributed (IID) settings. Moreover, the results showed that compared to other methods, DCPd exhibited a negligible decline in classification accuracy in experiments with different degrees of label bias. Thus, DCPd can address the low performance in non-IID settings, which is one of the challenges of federated learning.
Moreau-Yoshida Variational Transport: A General Framework For Solving Regularized Distributional Optimization Problems
Nguyen, Dai Hai, Sakurai, Tetsuya
We consider a general optimization problem of minimizing a composite objective functional defined over a class of probability distributions. The objective is composed of two functionals: one is assumed to possess the variational representation and the other is expressed in terms of the expectation operator of a possibly nonsmooth convex regularizer function. Such a regularized distributional optimization problem widely appears in machine learning and statistics, such as proximal Monte-Carlo sampling, Bayesian inference and generative modeling, for regularized estimation and generation. We propose a novel method, dubbed as Moreau-Yoshida Variational Transport (MYVT), for solving the regularized distributional optimization problem. First, as the name suggests, our method employs the Moreau-Yoshida envelope for a smooth approximation of the nonsmooth function in the objective. Second, we reformulate the approximate problem as a concave-convex saddle point problem by leveraging the variational representation, and then develope an efficient primal-dual algorithm to approximate the saddle point. Furthermore, we provide theoretical analyses and report experimental results to demonstrate the effectiveness of the proposed method.
Achieving Transparency in Distributed Machine Learning with Explainable Data Collaboration
Bogdanova, Anna, Imakura, Akira, Sakurai, Tetsuya, Fujii, Tomoya, Sakamoto, Teppei, Abe, Hiroyuki
Transparency of Machine Learning models used for decision support in various industries becomes essential for ensuring their ethical use. To that end, feature attribution methods such as SHAP (SHapley Additive exPlanations) are widely used to explain the predictions of black-box machine learning models to customers and developers. However, a parallel trend has been to train machine learning models in collaboration with other data holders without accessing their data. Such models, trained over horizontally or vertically partitioned data, present a challenge for explainable AI because the explaining party may have a biased view of background data or a partial view of the feature space. As a result, explanations obtained from different participants of distributed machine learning might not be consistent with one another, undermining trust in the product. This paper presents an Explainable Data Collaboration Framework based on a model-agnostic additive feature attribution algorithm (KernelSHAP) and Data Collaboration method of privacy-preserving distributed machine learning. In particular, we present three algorithms for different scenarios of explainability in Data Collaboration and verify their consistency with experiments on open-access datasets. Our results demonstrated a significant (by at least a factor of 1.75) decrease in feature attribution discrepancies among the users of distributed machine learning.
A Particle-Based Algorithm for Distributional Optimization on \textit{Constrained Domains} via Variational Transport and Mirror Descent
Nguyen, Dai Hai, Sakurai, Tetsuya
We consider the optimization problem of minimizing an objective functional, which admits a variational form and is defined over probability distributions on the constrained domain, which poses challenges to both theoretical analysis and algorithmic design. Inspired by the mirror descent algorithm for constrained optimization, we propose an iterative particle-based algorithm, named Mirrored Variational Transport (mirrorVT), extended from the Variational Transport framework [7] for dealing with the constrained domain. In particular, for each iteration, mirrorVT maps particles to an unconstrained dual domain induced by a mirror map and then approximately perform Wasserstein gradient descent on the manifold of distributions defined over the dual space by pushing particles. At the end of iteration, particles are mapped back to the original constrained domain. Through simulated experiments, we demonstrate the effectiveness of mirrorVT for minimizing the functionals over probability distributions on the simplex- and Euclidean ball-constrained domains. We also analyze its theoretical properties and characterize its convergence to the global minimum of the objective functional.