Roy, Deb
The Empty Chair: Using LLMs to Raise Missing Perspectives in Policy Deliberations
Fulay, Suyash, Roy, Deb
However, deliberative forums such as citizens' assemblies have shown promise in bypassing party polarization and fostering productive discussions on contentious political issues [3]. Unfortunately, most deliberations do not take place in carefully structured settings with nationally representative participants. Instead, they often occur within homogeneous groups [17]. When this happens, deliberation can lead to group polarization, where individuals become more extreme in their initial positions rather than engaging with opposing viewpoints [22]. This can be problematic if the goal of deliberation is to build common ground and consensus within a pluralistic electorate. Given that large language models (LLMs) have demonstrated some fidelity in accurately responding to opinion surveys [1, 20] and adopting different personas [12], we explore whether an LLM-powered tool can help introduce missing perspectives in group deliberation.
Bridging Context Gaps: Enhancing Comprehension in Long-Form Social Conversations Through Contextualized Excerpts
Mohanty, Shrestha, Xuan, Sarah, Jobraeel, Jacob, Kumar, Anurag, Roy, Deb, Kabbara, Jad
We focus on enhancing comprehension in small-group recorded conversations, which serve as a medium to bring people together and provide a space for sharing personal stories and experiences on crucial social matters. One way to parse and convey information from these conversations is by sharing highlighted excerpts in subsequent conversations. This can help promote a collective understanding of relevant issues, by highlighting perspectives and experiences to other groups of people who might otherwise be unfamiliar with and thus unable to relate to these experiences. The primary challenge that arises then is that excerpts taken from one conversation and shared in another setting might be missing crucial context or key elements that were previously introduced in the original conversation. This problem is exacerbated when conversations become lengthier and richer in themes and shared experiences. To address this, we explore how Large Language Models (LLMs) can enrich these excerpts by providing socially relevant context. We present approaches for effective contextualization to improve comprehension, readability, and empathy. We show significant improvements in understanding, as assessed through subjective and objective evaluations. While LLMs can offer valuable context, they struggle with capturing key social aspects. We release the Human-annotated Salient Excerpts (HSE) dataset to support future work. Additionally, we show how context-enriched excerpts can provide more focused and comprehensive conversation summaries.
AudienceView: AI-Assisted Interpretation of Audience Feedback in Journalism
Brannon, William, Beeferman, Doug, Jiang, Hang, Heyward, Andrew, Roy, Deb
Understanding and making use of audience feedback is important but difficult for journalists, who now face an impractically large volume of audience comments online. We introduce AudienceView, an online tool to help journalists categorize and interpret this feedback by leveraging large language models (LLMs). AudienceView identifies themes and topics, connects them back to specific comments, provides ways to visualize the sentiment and distribution of the comments, and helps users develop ideas for subsequent reporting projects. We consider how such tools can be useful in a journalist's workflow, and emphasize the importance of contextual awareness and human judgment.
Bridging Dictionary: AI-Generated Dictionary of Partisan Language Use
Jiang, Hang, Beeferman, Doug, Brannon, William, Heyward, Andrew, Roy, Deb
Words often carry different meanings for people from diverse backgrounds. Today's era of social polarization demands that we choose words carefully to prevent miscommunication, especially in political communication and journalism. To address this issue, we introduce the Bridging Dictionary, an interactive tool designed to illuminate how words are perceived by people with different political views. The Bridging Dictionary includes a static, printable document featuring 796 terms with summaries generated by a large language model. These summaries highlight how the terms are used distinctively by Republicans and Democrats. Additionally, the Bridging Dictionary offers an interactive interface that lets users explore selected words, visualizing their frequency, sentiment, summaries, and examples across political divides. We present a use case for journalists and emphasize the importance of human agency and trust in further enhancing this tool. The deployed version of Bridging Dictionary is available at https://dictionary.ccc-mit.org/.
LLM Targeted Underperformance Disproportionately Impacts Vulnerable Users
Poole-Dayan, Elinor, Roy, Deb, Kabbara, Jad
While state-of-the-art Large Language Models (LLMs) have shown impressive performance on many tasks, there has been extensive research on undesirable model behavior such as hallucinations and bias. In this work, we investigate how the quality of LLM responses changes in terms of information accuracy, truthfulness, and refusals depending on three user traits: English proficiency, education level, and country of origin. We present extensive experimentation on three state-of-the-art LLMs and two different datasets targeting truthfulness and factuality. Our findings suggest that undesirable behaviors in state-of-the-art LLMs occur disproportionately more for users with lower English proficiency, of lower education status, and originating from outside the US, rendering these models unreliable sources of information towards their most vulnerable users.
Prompting Large Language Models with Audio for General-Purpose Speech Summarization
Kang, Wonjune, Roy, Deb
In this work, we introduce a framework for speech summarization Our model is trained using the concept of modality invariance-- that leverages the processing and reasoning capabilities of the idea that, given certain semantic information in a prompt, large language models (LLMs). We propose an end-to-end system the LLM should provide the same response regardless of the that combines an instruction-tuned LLM with an audio encoder prompt's modality [12]. Specifically, we use an ASR dataset that converts speech into token representations that the with paired speech-text data; while keeping the LLM weights LLM can interpret. Using a dataset with paired speech-text data, frozen, we train the audio encoder to convert speech inputs into the overall system is trained to generate consistent responses to token representations that the LLM can interpret. Then, the endto-end prompts with the same semantic information regardless of the system is guided to produce the same output as when text input modality. The resulting framework allows the LLM to is the input using next-token prediction loss. We additionally process speech inputs in the same way as text, enabling speech incorporate knowledge distillation using the response from the summarization by simply prompting the LLM. Unlike prior approaches, corresponding text input as the teacher model, utilizing feature our method is able to summarize spoken content from and logit distillation losses to guide the model to produce more any arbitrary domain, and it can produce summaries in different consistent responses from speech inputs.
Topic Detection and Tracking with Time-Aware Document Embeddings
Jiang, Hang, Beeferman, Doug, Mao, Weiquan, Roy, Deb
The time at which a message is communicated is a vital piece of metadata in many real-world natural language processing tasks such as Topic Detection and Tracking (TDT). TDT systems aim to cluster a corpus of news articles by event, and in that context, stories that describe the same event are likely to have been written at around the same time. Prior work on time modeling for TDT takes this into account, but does not well capture how time interacts with the semantic nature of the event. For example, stories about a tropical storm are likely to be written within a short time interval, while stories about a movie release may appear over weeks or months. In our work, we design a neural method that fuses temporal and textual information into a single representation of news documents for event detection. We fine-tune these time-aware document embeddings with a triplet loss architecture, integrate the model into downstream TDT systems, and evaluate the systems on two benchmark TDT data sets in English. In the retrospective setting, we apply clustering algorithms to the time-aware embeddings and show substantial improvements over baselines on the News2013 data set. In the online streaming setting, we add our document encoder to an existing state-of-the-art TDT pipeline and demonstrate that it can benefit the overall performance. We conduct ablation studies on the time representation and fusion algorithm strategies, showing that our proposed model outperforms alternative strategies. Finally, we probe the model to examine how it handles recurring events more effectively than previous TDT systems.
ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings
Brannon, William, Fulay, Suyash, Jiang, Hang, Kang, Wonjune, Roy, Brandon, Kabbara, Jad, Roy, Deb
We propose ConGraT(Contrastive Graph-Text pretraining), a general, self-supervised method for jointly learning separate representations of texts and nodes in a parent (or ``supervening'') graph, where each text is associated with one of the nodes. Datasets fitting this paradigm are common, from social media (users and posts), to citation networks over articles, to link graphs over web pages. We expand on prior work by providing a general, self-supervised, joint pretraining method, one which does not depend on particular dataset structure or a specific task. Our method uses two separate encoders for graph nodes and texts, which are trained to align their representations within a common latent space. Training uses a batch-wise contrastive learning objective inspired by prior work on joint text and image encoding. As graphs are more structured objects than images, we also extend the training objective to incorporate information about node similarity and plausible next guesses in matching nodes and texts. Experiments on various datasets reveal that ConGraT outperforms strong baselines on various downstream tasks, including node and text category classification and link prediction. Code and certain datasets are available at https://github.com/wwbrannon/congrat.
Language Models Trained on Media Diets Can Predict Public Opinion
Chu, Eric, Andreas, Jacob, Ansolabehere, Stephen, Roy, Deb
Public opinion reflects and shapes societal behavior, but the traditional survey-based tools to measure it are limited. We introduce a novel approach to probe media diet models -- language models adapted to online news, TV broadcast, or radio show content -- that can emulate the opinions of subpopulations that have consumed a set of media. To validate this method, we use as ground truth the opinions expressed in U.S. nationally representative surveys on COVID-19 and consumer confidence. Our studies indicate that this approach is (1) predictive of human judgements found in survey response distributions and robust to phrasing and channels of media exposure, (2) more accurate at modeling people who follow media more closely, and (3) aligned with literature on which types of opinions are affected by media consumption. Probing language models provides a powerful new method for investigating media effects, has practical applications in supplementing polls and forecasting public opinion, and suggests a need for further study of the surprising fidelity with which neural language models can predict human responses.
Redrawing attendance boundaries to promote racial and ethnic diversity in elementary schools
Gillani, Nabeel, Beeferman, Doug, Vega-Pourheydarian, Christine, Overney, Cassandra, Van Hentenryck, Pascal, Roy, Deb
Most US school districts draw "attendance boundaries" to define catchment areas that assign students to schools near their homes, often recapitulating neighborhood demographic segregation in schools. Focusing on elementary schools, we ask: how much might we reduce school segregation by redrawing attendance boundaries? Combining parent preference data with methods from combinatorial optimization, we simulate alternative boundaries for 98 US school districts serving over 3 million elementary-aged students, minimizing White/non-White segregation while mitigating changes to travel times and school sizes. Across districts, we observe a median 14% relative decrease in segregation, which we estimate would require approximately 20\% of students to switch schools and, surprisingly, a slight reduction in travel times. We release a public dashboard depicting these alternative boundaries (https://www.schooldiversity.org/) and invite both school boards and their constituents to evaluate their viability. Our results show the possibility of greater integration without significant disruptions for families.