Rajan, Vaibhav
WISER: Weak supervISion and supErvised Representation learning to improve drug response prediction in cancer
Shubham, Kumar, Jayagopal, Aishwarya, Danish, Syed Mohammed, AP, Prathosh, Rajan, Vaibhav
Cancer, a leading cause of death globally, occurs due to genomic changes and manifests heterogeneously across patients. To advance research on personalized treatment strategies, the effectiveness of various drugs on cells derived from cancers (`cell lines') is experimentally determined in laboratory settings. Nevertheless, variations in the distribution of genomic data and drug responses between cell lines and humans arise due to biological and environmental differences. Moreover, while genomic profiles of many cancer patients are readily available, the scarcity of corresponding drug response data limits the ability to train machine learning models that can predict drug response in patients effectively. Recent cancer drug response prediction methods have largely followed the paradigm of unsupervised domain-invariant representation learning followed by a downstream drug response classification step. Introducing supervision in both stages is challenging due to heterogeneous patient response to drugs and limited drug response data. This paper addresses these challenges through a novel representation learning method in the first phase and weak supervision in the second. Experimental results on real patient data demonstrate the efficacy of our method (WISER) over state-of-the-art alternatives on predicting personalized drug response.
Personalised Drug Identifier for Cancer Treatment with Transformers using Auxiliary Information
Jayagopal, Aishwarya, Xue, Hansheng, He, Ziyang, Walsh, Robert J., Hariprasannan, Krishna Kumar, Tan, David Shao Peng, Tan, Tuan Zea, Pitt, Jason J., Jeyasekharan, Anand D., Rajan, Vaibhav
Cancer remains a global challenge due to its growing clinical and economic burden. Its uniquely personal manifestation, which makes treatment difficult, has fuelled the quest for personalized treatment strategies. Thus, genomic profiling is increasingly becoming part of clinical diagnostic panels. Effective use of such panels requires accurate drug response prediction (DRP) models, which are challenging to build due to limited labelled patient data. Previous methods to address this problem have used various forms of transfer learning. However, they do not explicitly model the variable length sequential structure of the list of mutations in such diagnostic panels. Further, they do not utilize auxiliary information (like patient survival) for model training. We address these limitations through a novel transformer based method, which surpasses the performance of state-of-the-art DRP models on benchmark data. We also present the design of a treatment recommendation system (TRS), which is currently deployed at the National University Hospital, Singapore and is being evaluated in a clinical trial.
Mixture-Models: a one-stop Python Library for Model-based Clustering using various Mixture Models
Kasa, Siva Rajesh, Yijie, Hu, Kasa, Santhosh Kumar, Rajan, Vaibhav
\texttt{Mixture-Models} is an open-source Python library for fitting Gaussian Mixture Models (GMM) and their variants, such as Parsimonious GMMs, Mixture of Factor Analyzers, MClust models, Mixture of Student's t distributions, etc. It streamlines the implementation and analysis of these models using various first/second order optimization routines such as Gradient Descent and Newton-CG through automatic differentiation (AD) tools. This helps in extending these models to high-dimensional data, which is first of its kind among Python libraries. The library provides user-friendly model evaluation tools, such as BIC, AIC, and log-likelihood estimation. The source-code is licensed under MIT license and can be accessed at \url{https://github.com/kasakh/Mixture-Models}. The package is highly extensible, allowing users to incorporate new distributions and optimization techniques with ease. We conduct a large scale simulation to compare the performance of various gradient based approaches against Expectation Maximization on a wide range of settings and identify the corresponding best suited approach.
A Joint-Reasoning based Disease Q&A System
Sukhwal, Prakash Chandra, Rajan, Vaibhav, Kankanhalli, Atreyi
Medical question answer (QA) assistants respond to lay users' health-related queries by synthesizing information from multiple sources using natural language processing and related techniques. They can serve as vital tools to alleviate issues of misinformation, information overload, and complexity of medical language, thus addressing lay users' information needs while reducing the burden on healthcare professionals. QA systems, the engines of such assistants, have typically used either language models (LMs) or knowledge graphs (KG), though the approaches could be complementary. LM-based QA systems excel at understanding complex questions and providing well-formed answers, but are prone to factual mistakes. KG-based QA systems, which represent facts well, are mostly limited to answering short-answer questions with pre-created templates. While a few studies have jointly used LM and KG approaches for text-based QA, this was done to answer multiple-choice questions. Extant QA systems also have limitations in terms of automation and performance. We address these challenges by designing a novel, automated disease QA system which effectively utilizes both LM and KG techniques through a joint-reasoning approach to answer disease-related questions appropriate for lay users. Our evaluation of the system using a range of quality metrics demonstrates its efficacy over benchmark systems, including the popular ChatGPT.
Exact Pareto Optimal Search for Multi-Task Learning and Multi-Criteria Decision-Making
Mahapatra, Debabrata, Rajan, Vaibhav
Given multiple non-convex objective functions and objective-specific weights, Chebyshev scalarization (CS) is a well-known approach to obtain an Exact Pareto Optimal (EPO), i.e., a solution on the Pareto front (PF) that intersects the ray defined by the inverse of the weights. First-order optimizers that use the CS formulation to find EPO solutions encounter practical problems of oscillations and stagnation that affect convergence. Moreover, when initialized with a PO solution, they do not guarantee a controlled trajectory that lies completely on the PF. These shortcomings lead to modeling limitations and computational inefficiency in multi-task learning (MTL) and multi-criteria decision-making (MCDM) methods that utilize CS for their underlying non-convex multi-objective optimization (MOO). To address these shortcomings, we design a new MOO method, EPO Search. We prove that EPO Search converges to an EPO solution and empirically illustrate its computational efficiency and robustness to initialization. When initialized on the PF, EPO Search can trace the PF and converge to the required EPO solution at a linear rate of convergence. Using EPO Search we develop new algorithms: PESA-EPO for approximating the PF in a posteriori MCDM, and GP-EPO for preference elicitation in interactive MCDM; experiments on benchmark datasets confirm their advantages over competing alternatives. EPO Search scales linearly with the number of decision variables which enables its use for training deep networks. Empirical results on real data from personalized medicine, e-commerce and hydrometeorology demonstrate the efficacy of EPO Search for deep MTL.
Multi-way Clustering and Discordance Analysis through Deep Collective Matrix Tri-Factorization
Mariappan, Ragunathan, Rajan, Vaibhav
Heterogeneous multi-typed, multimodal relational data is increasingly available in many domains and their exploratory analysis poses several challenges. We advance the state-of-the-art in neural unsupervised learning to analyze such data. We design the first neural method for collective matrix tri-factorization of arbitrary collections of matrices to perform spectral clustering of all constituent entities and learn cluster associations. Experiments on benchmark datasets demonstrate its efficacy over previous non-neural approaches. Leveraging signals from multi-way clustering and collective matrix completion we design a unique technique, called Discordance Analysis, to reveal information discrepancies across subsets of matrices in a collection with respect to two entities. We illustrate its utility in quality assessment of knowledge bases and in improving representation learning.
CAC: A Clustering Based Framework for Classification
Srivastava, Shivin, Bhatia, Siddharth, Huang, Lingxiao, Heng, Lim Jun, Kawaguchi, Kenji, Rajan, Vaibhav
In data containing heterogeneous subpopulations, classification performance benefits from incorporating the knowledge of cluster structure in the classifier. Previous methods for such combined clustering and classification either are classifier-specific and not generic or independently perform clustering and classifier training, which may not form clusters that can potentially benefit classifier performance. The question of how to perform clustering to improve the performance of classifiers trained on the clusters has received scant attention in previous literature despite its importance in several real-world applications. In this paper, we theoretically analyze when and how clustering may help in obtaining accurate classifiers. We design a simple, efficient, and generic framework called Classification Aware Clustering (CAC), to find clusters that are well suited for being used as training datasets by classifiers for each underlying subpopulation. Our experiments on synthetic and real benchmark datasets demonstrate the efficacy of CAC over previous methods for combined clustering and classification.
Multi-way Spectral Clustering of Augmented Multi-view Data through Deep Collective Matrix Tri-factorization
Mariappan, Ragunathan, Rajan, Vaibhav
We present the first deep learning based architecture for collective matrix tri-factorization (DCMTF) of arbitrary collections of matrices, also known as augmented multi-view data. DCMTF can be used for multi-way spectral clustering of heterogeneous collections of relational data matrices to discover latent clusters in each input matrix, across both dimensions, as well as the strengths of association across clusters. The source code for DCMTF is available on our public repository: https://bitbucket.org/cdal/dcmtf_generic
Model-based Clustering using Automatic Differentiation: Confronting Misspecification and High-Dimensional Data
Kasa, Siva Rajesh, Rajan, Vaibhav
We study two practically important cases of model based clustering using Gaussian Mixture Models: (1) when there is misspecification and (2) on high dimensional data, in the light of recent advances in Gradient Descent (GD) based optimization using Automatic Differentiation (AD). Our simulation studies show that EM has better clustering performance, measured by Adjusted Rand Index, compared to GD in cases of misspecification, whereas on high dimensional data GD outperforms EM. We observe that both with EM and GD there are many solutions with high likelihood but poor cluster interpretation. To address this problem we design a new penalty term for the likelihood based on the Kullback Leibler divergence between pairs of fitted components. Closed form expressions for the gradients of this penalized likelihood are difficult to derive but AD can be done effortlessly, illustrating the advantage of AD-based optimization. Extensions of this penalty for high dimensional data and for model selection are discussed. Numerical experiments on synthetic and real datasets demonstrate the efficacy of clustering using the proposed penalized likelihood approach.
Inferring Concept Prerequisite Relations from Online Educational Resources
Roy, Sudeshna, Madhyastha, Meghana, Lawrence, Sheril, Rajan, Vaibhav
The Internet has rich and rapidly increasing sources of high quality educational content. Inferring prerequisite relations between educational concepts is required for modern large-scale online educational technology applications such as personalized recommendations and automatic curriculum creation. We present PREREQ, a new supervised learning method for inferring concept prerequisite relations. PREREQ is designed using latent representations of concepts obtained from the Pairwise Latent Dirichlet Allocation model, and a neural network based on the Siamese network architecture. PREREQ can learn unknown concept prerequisites from course prerequisites and labeled concept prerequisite data. It outperforms state-of-the-art approaches on benchmark datasets and can effectively learn from very less training data. PREREQ can also use unlabeled video playlists, a steadily growing source of training data, to learn concept prerequisites, thus obviating the need for manual annotation of course prerequisites.