Goto

Collaborating Authors

 Rai, Akshara


RobotMover: Learning to Move Large Objects by Imitating the Dynamic Chain

arXiv.org Artificial Intelligence

Moving large objects, such as furniture, is a critical capability for robots operating in human environments. This task presents significant challenges due to two key factors: the need to synchronize whole-body movements to prevent collisions between the robot and the object, and the under-actuated dynamics arising from the substantial size and weight of the objects. These challenges also complicate performing these tasks via teleoperation. In this work, we introduce \method, a generalizable learning framework that leverages human-object interaction demonstrations to enable robots to perform large object manipulation tasks. Central to our approach is the Dynamic Chain, a novel representation that abstracts human-object interactions so that they can be retargeted to robotic morphologies. The Dynamic Chain is a spatial descriptor connecting the human and object root position via a chain of nodes, which encode the position and velocity of different interaction keypoints. We train policies in simulation using Dynamic-Chain-based imitation rewards and domain randomization, enabling zero-shot transfer to real-world settings without fine-tuning. Our approach outperforms both learning-based methods and teleoperation baselines across six evaluation metrics when tested on three distinct object types, both in simulation and on physical hardware. Furthermore, we successfully apply the learned policies to real-world tasks, such as moving a trash cart and rearranging chairs.


PARTNR: A Benchmark for Planning and Reasoning in Embodied Multi-agent Tasks

arXiv.org Artificial Intelligence

We present a benchmark for Planning And Reasoning Tasks in humaN-Robot collaboration (PARTNR) designed to study human-robot coordination in household activities. PARTNR tasks exhibit characteristics of everyday tasks, such as spatial, temporal, and heterogeneous agent capability constraints. We employ a semi-automated task generation pipeline using Large Language Models (LLMs), incorporating simulation in the loop for grounding and verification. PARTNR stands as the largest benchmark of its kind, comprising 100,000 natural language tasks, spanning 60 houses and 5,819 unique objects. We analyze state-of-the-art LLMs on PARTNR tasks, across the axes of planning, perception and skill execution. The analysis reveals significant limitations in SoTA models, such as poor coordination and failures in task tracking and recovery from errors. When LLMs are paired with real humans, they require 1.5x as many steps as two humans collaborating and 1.1x more steps than a single human, underscoring the potential for improvement in these models. We further show that fine-tuning smaller LLMs with planning data can achieve performance on par with models 9 times larger, while being 8.6x faster at inference. Overall, PARTNR highlights significant challenges facing collaborative embodied agents and aims to drive research in this direction.


Situated Instruction Following

arXiv.org Artificial Intelligence

Language is never spoken in a vacuum. It is expressed, comprehended, and contextualized within the holistic backdrop of the speaker's history, actions, and environment. Since humans are used to communicating efficiently with situated language, the practicality of robotic assistants hinge on their ability to understand and act upon implicit and situated instructions. In traditional instruction following paradigms, the agent acts alone in an empty house, leading to language use that is both simplified and artificially "complete." In contrast, we propose situated instruction following (SIF), which embraces the inherent underspecification and ambiguity of real-world communication with the physical presence of a human speaker. The meaning of situated instructions naturally unfold through the past actions and the expected future behaviors of the human involved. Specifically, within our settings we have instructions that (1) are ambiguously specified, (2) have temporally evolving intent, (3) can be interpreted more precisely with the agent's dynamic actions. Our experiments indicate that state-of-the-art Embodied Instruction Following (EIF) models lack holistic understanding of situated human intention.


ASC: Adaptive Skill Coordination for Robotic Mobile Manipulation

arXiv.org Artificial Intelligence

We present Adaptive Skill Coordination (ASC) -- an approach for accomplishing long-horizon tasks like mobile pick-and-place (i.e., navigating to an object, picking it, navigating to another location, and placing it). ASC consists of three components -- (1) a library of basic visuomotor skills (navigation, pick, place), (2) a skill coordination policy that chooses which skill to use when, and (3) a corrective policy that adapts pre-trained skills in out-of-distribution states. All components of ASC rely only on onboard visual and proprioceptive sensing, without requiring detailed maps with obstacle layouts or precise object locations, easing real-world deployment. We train ASC in simulated indoor environments, and deploy it zero-shot (without any real-world experience or fine-tuning) on the Boston Dynamics Spot robot in eight novel real-world environments (one apartment, one lab, two microkitchens, two lounges, one office space, one outdoor courtyard). In rigorous quantitative comparisons in two environments, ASC achieves near-perfect performance (59/60 episodes, or 98%), while sequentially executing skills succeeds in only 44/60 (73%) episodes. Extensive perturbation experiments show that ASC is robust to hand-off errors, changes in the environment layout, dynamic obstacles (e.g., people), and unexpected disturbances. Supplementary videos at adaptiveskillcoordination.github.io.


Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots

arXiv.org Artificial Intelligence

We present Habitat 3.0: a simulation platform for studying collaborative human-robot tasks in home environments. Habitat 3.0 offers contributions across three dimensions: (1) Accurate humanoid simulation: addressing challenges in modeling complex deformable bodies and diversity in appearance and motion, all while ensuring high simulation speed. (2) Human-in-the-loop infrastructure: enabling real human interaction with simulated robots via mouse/keyboard or a VR interface, facilitating evaluation of robot policies with human input. (3) Collaborative tasks: studying two collaborative tasks, Social Navigation and Social Rearrangement. Social Navigation investigates a robot's ability to locate and follow humanoid avatars in unseen environments, whereas Social Rearrangement addresses collaboration between a humanoid and robot while rearranging a scene. These contributions allow us to study end-to-end learned and heuristic baselines for human-robot collaboration in-depth, as well as evaluate them with humans in the loop. Our experiments demonstrate that learned robot policies lead to efficient task completion when collaborating with unseen humanoid agents and human partners that might exhibit behaviors that the robot has not seen before. Additionally, we observe emergent behaviors during collaborative task execution, such as the robot yielding space when obstructing a humanoid agent, thereby allowing the effective completion of the task by the humanoid agent. Furthermore, our experiments using the human-in-the-loop tool demonstrate that our automated evaluation with humanoids can provide an indication of the relative ordering of different policies when evaluated with real human collaborators. Habitat 3.0 unlocks interesting new features in simulators for Embodied AI, and we hope it paves the way for a new frontier of embodied human-AI interaction capabilities.


Skill Transformer: A Monolithic Policy for Mobile Manipulation

arXiv.org Artificial Intelligence

Prior works [6, 33, 37] show that long-horizon robotic tasks by combining conditional sequence it is possible to end-to-end learn a single policy that can modeling and skill modularity. Conditioned on egocentric perform such diverse tasks and behaviors. Such a monolithic and proprioceptive observations of a robot, Skill policy directly maps observations to low-level actions, Transformer is trained end-to-end to predict both a highlevel reasoning both about which skill to execute and how to skill (e.g., navigation, picking, placing), and a wholebody execute it. However, scaling end-to-end learning to longhorizon, low-level action (e.g., base and arm motion), using multi-phase tasks with thousands of low-level steps a transformer architecture and demonstration trajectories and egocentric visual observations remains a challenging that solve the full task. It retains the composability and research question.


Adaptive Coordination in Social Embodied Rearrangement

arXiv.org Artificial Intelligence

We present the task of "Social Rearrangement", consisting of cooperative everyday tasks like setting up the dinner table, tidying a house or unpacking groceries in a simulated multi-agent environment. In Social Rearrangement, two robots coordinate to complete a long-horizon task, using onboard sensing and egocentric observations, and no privileged information about the environment. We study zero-shot coordination (ZSC) in this task, where an agent collaborates with a new partner, emulating a scenario where a robot collaborates with a new human partner. Prior ZSC approaches struggle to generalize in our complex and visually rich setting, and on further analysis, we find that they fail to generate diverse coordination behaviors at training time. To counter this, we propose Behavior Diversity Play (BDP), a novel ZSC approach that encourages diversity through a discriminability objective. Our results demonstrate that BDP learns adaptive agents that can tackle visual coordination, and zero-shot generalize to new partners in unseen environments, achieving 35% higher success and 32% higher efficiency compared to baselines.


ACE: Adversarial Correspondence Embedding for Cross Morphology Motion Retargeting from Human to Nonhuman Characters

arXiv.org Artificial Intelligence

Motion retargeting is a promising approach for generating natural and compelling animations for nonhuman characters. However, it is challenging to translate human movements into semantically equivalent motions for target characters with different morphologies due to the ambiguous nature of the problem. This work presents a novel learning-based motion retargeting framework, Adversarial Correspondence Embedding (ACE), to retarget human motions onto target characters with different body dimensions and structures. Our framework is designed to produce natural and feasible robot motions by leveraging generative-adversarial networks (GANs) while preserving high-level motion semantics by introducing an additional feature loss. In addition, we pretrain a robot motion prior that can be controlled in a latent embedding space and seek to establish a compact correspondence. We demonstrate that the proposed framework can produce retargeted motions for three different characters -- a quadrupedal robot with a manipulator, a crab character, and a wheeled manipulator. We further validate the design choices of our framework by conducting baseline comparisons and a user study. We also showcase sim-to-real transfer of the retargeted motions by transferring them to a real Spot robot.


Learning Torque Control for Quadrupedal Locomotion

arXiv.org Artificial Intelligence

Reinforcement learning (RL) has become a promising approach to developing controllers for quadrupedal robots. Conventionally, an RL design for locomotion follows a position-based paradigm, wherein an RL policy outputs target joint positions at a low frequency that are then tracked by a high-frequency proportional-derivative (PD) controller to produce joint torques. In contrast, for the model-based control of quadrupedal locomotion, there has been a paradigm shift from position-based control to torque-based control. In light of the recent advances in model-based control, we explore an alternative to the position-based RL paradigm, by introducing a torque-based RL framework, where an RL policy directly predicts joint torques at a high frequency, thus circumventing the use of a PD controller. The proposed learning torque control framework is validated with extensive experiments, in which a quadruped is capable of traversing various terrain and resisting external disturbances while following user-specified commands. Furthermore, compared to learning position control, learning torque control demonstrates the potential to achieve a higher reward and is more robust to significant external disturbances. To our knowledge, this is the first sim-to-real attempt for end-to-end learning torque control of quadrupedal locomotion.


Cross-Domain Transfer via Semantic Skill Imitation

arXiv.org Artificial Intelligence

We propose an approach for semantic imitation, which uses demonstrations from a source domain, e.g. human videos, to accelerate reinforcement learning (RL) in a different target domain, e.g. a robotic manipulator in a simulated kitchen. Instead of imitating low-level actions like joint velocities, our approach imitates the sequence of demonstrated semantic skills like "opening the microwave" or "turning on the stove". This allows us to transfer demonstrations across environments (e.g. real-world to simulated kitchen) and agent embodiments (e.g. bimanual human demonstration to robotic arm). We evaluate on three challenging cross-domain learning problems and match the performance of demonstration-accelerated RL approaches that require in-domain demonstrations. In a simulated kitchen environment, our approach learns long-horizon robot manipulation tasks, using less than 3 minutes of human video demonstrations from a real-world kitchen. This enables scaling robot learning via the reuse of demonstrations, e.g. collected as human videos, for learning in any number of target domains.