Qin, Tao
MoonCast: High-Quality Zero-Shot Podcast Generation
Ju, Zeqian, Yang, Dongchao, Yu, Jianwei, Shen, Kai, Leng, Yichong, Wang, Zhengtao, Tan, Xu, Zhou, Xinyu, Qin, Tao, Li, Xiangyang
Recent advances in text-to-speech synthesis have achieved notable success in generating high-quality short utterances for individual speakers. However, these systems still face challenges when extending their capabilities to long, multi-speaker, and spontaneous dialogues, typical of real-world scenarios such as podcasts. These limitations arise from two primary challenges: 1) long speech: podcasts typically span several minutes, exceeding the upper limit of most existing work; 2) spontaneity: podcasts are marked by their spontaneous, oral nature, which sharply contrasts with formal, written contexts; existing works often fall short in capturing this spontaneity. In this paper, we propose MoonCast, a solution for high-quality zero-shot podcast generation, aiming to synthesize natural podcast-style speech from text-only sources (e.g., stories, technical reports, news in TXT, PDF, or Web URL formats) using the voices of unseen speakers. To generate long audio, we adopt a long-context language model-based audio modeling approach utilizing large-scale long-context speech data. To enhance spontaneity, we utilize a podcast generation module to generate scripts with spontaneous details, which have been empirically shown to be as crucial as the text-to-speech modeling itself. Experiments demonstrate that MoonCast outperforms baselines, with particularly notable improvements in spontaneity and coherence.
UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion
Zhang, Gongbo, Li, Yanting, Luo, Renqian, Hu, Pipi, Zhao, Zeru, Li, Lingbo, Liu, Guoqing, Wang, Zun, Bi, Ran, Gao, Kaiyuan, Guo, Liya, Xie, Yu, Liu, Chang, Zhang, Jia, Xie, Tian, Pinsler, Robert, Zeni, Claudio, Lu, Ziheng, Xia, Yingce, Segler, Marwin, Riechert, Maik, Yuan, Li, Chen, Lei, Liu, Haiguang, Qin, Tao
Unified generation of sequence and structure for scientific data (e.g., materials, molecules, proteins) is a critical task. Existing approaches primarily rely on either autoregressive sequence models or diffusion models, each offering distinct advantages and facing notable limitations. Autoregressive models, such as GPT, Llama, and Phi-4, have demonstrated remarkable success in natural language generation and have been extended to multimodal tasks (e.g., image, video, and audio) using advanced encoders like VQ-VAE to represent complex modalities as discrete sequences. However, their direct application to scientific domains is challenging due to the high precision requirements and the diverse nature of scientific data. On the other hand, diffusion models excel at generating high-dimensional scientific data, such as protein, molecule, and material structures, with remarkable accuracy. Yet, their inability to effectively model sequences limits their potential as general-purpose multimodal foundation models. To address these challenges, we propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models. This integration leverages the strengths of autoregressive models to ease the training of conditional diffusion models, while diffusion-based generative heads enhance the precision of autoregressive predictions. We validate the effectiveness of UniGenX on material and small molecule generation tasks, achieving a significant leap in state-of-the-art performance for material crystal structure prediction and establishing new state-of-the-art results for small molecule structure prediction, de novo design, and conditional generation. Notably, UniGenX demonstrates significant improvements, especially in handling long sequences for complex structures, showcasing its efficacy as a versatile tool for scientific data generation.
Fast and Accurate Blind Flexible Docking
Zhang, Zizhuo, Wu, Lijun, Gao, Kaiyuan, Yao, Jiangchao, Qin, Tao, Han, Bo
Molecular docking that predicts the bound structures of small molecules (ligands) to their protein targets, plays a vital role in drug discovery. However, existing docking methods often face limitations: they either overlook crucial structural changes by assuming protein rigidity or suffer from low computational efficiency due to their reliance on generative models for structure sampling. To address these challenges, we propose FABFlex, a fast and accurate regression-based multi-task learning model designed for realistic blind flexible docking scenarios, where proteins exhibit flexibility and binding pocket sites are unknown (blind). Specifically, FABFlex's architecture comprises three specialized modules working in concert: (1) A pocket prediction module that identifies potential binding sites, addressing the challenges inherent in blind docking scenarios. (2) A ligand docking module that predicts the bound (holo) structures of ligands from their unbound (apo) states. (3) A pocket docking module that forecasts the holo structures of protein pockets from their apo conformations. Notably, FABFlex incorporates an iterative update mechanism that serves as a conduit between the ligand and pocket docking modules, enabling continuous structural refinements. This approach effectively integrates the three subtasks of blind flexible docking-pocket identification, ligand conformation prediction, and protein flexibility modeling-into a unified, coherent framework. Extensive experiments on public benchmark datasets demonstrate that FABFlex not only achieves superior effectiveness in predicting accurate binding modes but also exhibits a significant speed advantage (208 $\times$) compared to existing state-of-the-art methods. Our code is released at https://github.com/tmlr-group/FABFlex.
HybriDNA: A Hybrid Transformer-Mamba2 Long-Range DNA Language Model
Ma, Mingqian, Liu, Guoqing, Cao, Chuan, Deng, Pan, Dao, Tri, Gu, Albert, Jin, Peiran, Yang, Zhao, Xia, Yingce, Luo, Renqian, Hu, Pipi, Wang, Zun, Chen, Yuan-Jyue, Liu, Haiguang, Qin, Tao
Advances in natural language processing and large language models have sparked growing interest in modeling DNA, often referred to as the "language of life". However, DNA modeling poses unique challenges. First, it requires the ability to process ultra-long DNA sequences while preserving single-nucleotide resolution, as individual nucleotides play a critical role in DNA function. Second, success in this domain requires excelling at both generative and understanding tasks: generative tasks hold potential for therapeutic and industrial applications, while understanding tasks provide crucial insights into biological mechanisms and diseases. To address these challenges, we propose HybriDNA, a decoder-only DNA language model that incorporates a hybrid Transformer-Mamba2 architecture, seamlessly integrating the strengths of attention mechanisms with selective state-space models. This hybrid design enables HybriDNA to efficiently process DNA sequences up to 131kb in length with single-nucleotide resolution. HybriDNA achieves state-of-the-art performance across 33 DNA understanding datasets curated from the BEND, GUE, and LRB benchmarks, and demonstrates exceptional capability in generating synthetic cis-regulatory elements (CREs) with desired properties. Furthermore, we show that HybriDNA adheres to expected scaling laws, with performance improving consistently as the model scales from 300M to 3B and 7B parameters. These findings underscore HybriDNA's versatility and its potential to advance DNA research and applications, paving the way for innovations in understanding and engineering the "language of life".
NatureLM: Deciphering the Language of Nature for Scientific Discovery
Xia, Yingce, Jin, Peiran, Xie, Shufang, He, Liang, Cao, Chuan, Luo, Renqian, Liu, Guoqing, Wang, Yue, Liu, Zequn, Chen, Yuan-Jyue, Guo, Zekun, Bai, Yeqi, Deng, Pan, Min, Yaosen, Lu, Ziheng, Hao, Hongxia, Yang, Han, Li, Jielan, Liu, Chang, Zhang, Jia, Zhu, Jianwei, Wu, Kehan, Zhang, Wei, Gao, Kaiyuan, Pei, Qizhi, Wang, Qian, Liu, Xixian, Li, Yanting, Zhu, Houtian, Lu, Yeqing, Ma, Mingqian, Wang, Zun, Xie, Tian, Maziarz, Krzysztof, Segler, Marwin, Yang, Zhao, Chen, Zilong, Shi, Yu, Zheng, Shuxin, Wu, Lijun, Hu, Chen, Dai, Peggy, Liu, Tie-Yan, Liu, Haiguang, Qin, Tao
Foundation models have revolutionized natural language processing and artificial intelligence, significantly enhancing how machines comprehend and generate human languages. Inspired by the success of these foundation models, researchers have developed foundation models for individual scientific domains, including small molecules, materials, proteins, DNA, and RNA. However, these models are typically trained in isolation, lacking the ability to integrate across different scientific domains. Recognizing that entities within these domains can all be represented as sequences, which together form the "language of nature", we introduce Nature Language Model (briefly, NatureLM), a sequence-based science foundation model designed for scientific discovery. Pre-trained with data from multiple scientific domains, NatureLM offers a unified, versatile model that enables various applications including: (i) generating and optimizing small molecules, proteins, RNA, and materials using text instructions; (ii) cross-domain generation/design, such as protein-to-molecule and protein-to-RNA generation; and (iii) achieving state-of-the-art performance in tasks like SMILES-to-IUPAC translation and retrosynthesis on USPTO-50k. NatureLM offers a promising generalist approach for various scientific tasks, including drug discovery (hit generation/optimization, ADMET optimization, synthesis), novel material design, and the development of therapeutic proteins or nucleotides. We have developed NatureLM models in different sizes (1 billion, 8 billion, and 46.7 billion parameters) and observed a clear improvement in performance as the model size increases.
E2Former: A Linear-time Efficient and Equivariant Transformer for Scalable Molecular Modeling
Li, Yunyang, Huang, Lin, Ding, Zhihao, Wang, Chu, Wei, Xinran, Yang, Han, Wang, Zun, Liu, Chang, Shi, Yu, Jin, Peiran, Zhang, Jia, Gerstein, Mark, Qin, Tao
Equivariant Graph Neural Networks (EGNNs) have demonstrated significant success in modeling microscale systems, including those in chemistry, biology and materials science. However, EGNNs face substantial computational challenges due to the high cost of constructing edge features via spherical tensor products, making them impractical for large-scale systems. To address this limitation, we introduce E2Former, an equivariant and efficient transformer architecture that incorporates the Wigner $6j$ convolution (Wigner $6j$ Conv). By shifting the computational burden from edges to nodes, the Wigner $6j$ Conv reduces the complexity from $O(|\mathcal{E}|)$ to $ O(| \mathcal{V}|)$ while preserving both the model's expressive power and rotational equivariance. We show that this approach achieves a 7x-30x speedup compared to conventional $\mathrm{SO}(3)$ convolutions. Furthermore, our empirical results demonstrate that the derived E2Former mitigates the computational challenges of existing approaches without compromising the ability to capture detailed geometric information. This development could suggest a promising direction for scalable and efficient molecular modeling.
MIN: Multi-channel Interaction Network for Drug-Target Interaction with Protein Distillation
Li, Shuqi, Xie, Shufang, Sun, Hongda, Chen, Yuhan, Qin, Tao, Ke, Tianjun, Yan, Rui
Traditional drug discovery processes are both time-consuming and require extensive professional expertise. With the accumulation of drug-target interaction (DTI) data from experimental studies, leveraging modern machine-learning techniques to discern patterns between drugs and target proteins has become increasingly feasible. In this paper, we introduce the Multi-channel Interaction Network (MIN), a novel framework designed to predict DTIs through two primary components: a representation learning module and a multi-channel interaction module. The representation learning module features a C-Score Predictor-assisted screening mechanism, which selects critical residues to enhance prediction accuracy and reduce noise. The multi-channel interaction module incorporates a structure-agnostic channel, a structure-aware channel, and an extended-mixture channel, facilitating the identification of interaction patterns at various levels for optimal complementarity. Additionally, contrastive learning is utilized to harmonize the representations of diverse data types. Our experimental evaluations on public datasets demonstrate that MIN surpasses other strong DTI prediction methods. Furthermore, the case study reveals a high overlap between the residues selected by the C-Score Predictor and those in actual binding pockets, underscoring MIN's explainability capability. These findings affirm that MIN is not only a potent tool for DTI prediction but also offers fresh insights into the prediction of protein binding sites.
SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation
He, Liang, Jin, Peiran, Min, Yaosen, Xie, Shufang, Wu, Lijun, Qin, Tao, Liang, Xiaozhuan, Gao, Kaiyuan, Jiang, Yuliang, Liu, Tie-Yan
Proteins, essential to biological systems, perform functions intricately linked to their three-dimensional structures. Understanding the relationship between protein structures and their amino acid sequences remains a core challenge in protein modeling. While traditional protein foundation models benefit from pre-training on vast unlabeled datasets, they often struggle to capture critical co-evolutionary information, which evolutionary-based methods excel at. In this study, we introduce a novel pre-training strategy for protein foundation models that emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features from sequence data. Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability, outperforming established baselines of similar size, including the ESM model, across diverse downstream tasks. Experimental results confirm the model's effectiveness in integrating co-evolutionary information, marking a significant step forward in protein sequence-based modeling.
Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning
Ren, Yuxuan, Zheng, Dihan, Liu, Chang, Jin, Peiran, Shi, Yu, Huang, Lin, He, Jiyan, Luo, Shengjie, Qin, Tao, Liu, Tie-Yan
In recent years, machine learning has demonstrated impressive capability in handling molecular science tasks. To support various molecular properties at scale, machine learning models are trained in the multi-task learning paradigm. Nevertheless, data of different molecular properties are often not aligned: some quantities, e.g. equilibrium structure, demand more cost to compute than others, e.g. energy, so their data are often generated by cheaper computational methods at the cost of lower accuracy, which cannot be directly overcome through multi-task learning. Moreover, it is not straightforward to leverage abundant data of other tasks to benefit a particular task. To handle such data heterogeneity challenges, we exploit the specialty of molecular tasks that there are physical laws connecting them, and design consistency training approaches that allow different tasks to exchange information directly so as to improve one another. Particularly, we demonstrate that the more accurate energy data can improve the accuracy of structure prediction. We also find that consistency training can directly leverage force and off-equilibrium structure data to improve structure prediction, demonstrating a broad capability for integrating heterogeneous data.
Research on Foundation Model for Spatial Data Intelligence: China's 2024 White Paper on Strategic Development of Spatial Data Intelligence
Wang, Shaohua, Xie, Xing, Li, Yong, Guo, Danhuai, Cai, Zhi, Liu, Yu, Yue, Yang, Pan, Xiao, Lu, Feng, Wu, Huayi, Gui, Zhipeng, Ding, Zhiming, Zheng, Bolong, Zhang, Fuzheng, Qin, Tao, Wang, Jingyuan, Tao, Chuang, Chen, Zhengchao, Lu, Hao, Li, Jiayi, Chen, Hongyang, Yue, Peng, Yu, Wenhao, Yao, Yao, Sun, Leilei, Zhang, Yong, Chen, Longbiao, Du, Xiaoping, Li, Xiang, Zhang, Xueying, Qin, Kun, Gong, Zhaoya, Dong, Weihua, Meng, Xiaofeng
Research status and development trends; on this basis, this report proposes three major challenges faced by large spatial data intelligent models today. This report focuses on the current research status of spatial data intelligent large-scale models and sorts out the research progress in four major thematic areas of spatial data intelligent large-scale models: cities, air and space remote sensing, geography, and transportation. This report systematically introduces the key technologies, characteristics and advantages, research status, future development and other core information of spatial data intelligent large models, involving spatiotemporal big data platforms, distributed computing, 3D virtual reality, space The basic performance of large models such as analysis and visualization, as well as the complex spatial comprehensive performance of large models such as geospatial intelligent computing, deep learning, high-performance processing of big data, geographical knowledge graphs, and geographical intelligent multi-scenario simulation, analyze the application of the above key technologies in spatial data The location and role of smart large models.