Goto

Collaborating Authors

 Popovski, Petar


Energy-Aware Federated Learning in Satellite Constellations

arXiv.org Artificial Intelligence

Federated learning in satellite constellations, where the satellites collaboratively train a machine learning model, is a promising technology towards enabling globally connected intelligence and the integration of space networks into terrestrial mobile networks. The energy required for this computationally intensive task is provided either by solar panels or by an internal battery if the satellite is in Earth's shadow. Careful management of this battery and system's available energy resources is not only necessary for reliable satellite operation, but also to avoid premature battery aging. We propose a novel energy-aware computation time scheduler for satellite FL, which aims to minimize battery usage without any impact on the convergence speed. Numerical results indicate an increase of more than 3x in battery lifetime can be achieved over energy-agnostic task scheduling.


Continual Deep Reinforcement Learning for Decentralized Satellite Routing

arXiv.org Artificial Intelligence

This paper introduces a full solution for decentralized routing in Low Earth Orbit Satellite Constellations (LSatCs) based on continual Deep Reinforcement Learning (DRL). This requires addressing multiple challenges, including the partial knowledge at the satellites and their continuous movement, and the time-varying sources of uncertainty in the system, such as traffic, communication links, or communication buffers. We follow a multi-agent approach, where each satellite acts as an independent decision-making agent, while acquiring a limited knowledge of the environment based on the feedback received from the nearby agents. The solution is divided into two phases. First, an offline learning phase relies on decentralized decisions and a global Deep Neural Network (DNN) trained with global experiences to learn the optimal paths at each possible position and congestion level. Then, the online phase with local, on-board, and pre-trained DNNs requires continual learning to evolve with the environment, which can be done in two different ways: (1) Model anticipation, where the predictable conditions of the constellation, resulting from its orbital dynamics, are exploited by each satellite sharing local model with the next satellite; and (2) Federated Learning (FL), where each agent's model is merged first at the cluster level and then aggregated in a global Parameter Server (PS) at ground or at a geostationary orbit (GEO) satellite. The results show that, without high congestion, the proposed Multi-Agent Deep Reinforcement Learning (MA-DRL) framework achieves the same E2E performance as a shortest-path solution, but the latter assumes intensive communication overhead for real-time network-wise knowledge of the system at a centralized node, whereas ours only requires limited feedback exchange among first neighbour satellites. Moreover, the divergence of models over time is easily tackled by the synergy between anticipation, applied in short-term alignment, and FL, utilized for long-term alignment. F. Lozano-Cuadra (flozano@ic.uma.es) and B. Soret are with the Telecommunications Research Institute, University of Malaga, 29071, Malaga, Spain. I. Leyva-Mayorga and P. Popovski are with the Connectivity Section, Aalborg University, 9220 Aalborg, Denmark. The work of F. Lozano-Cuadra and B. Soret is partially funded by the European Space Agency (ESA) framework SatNEx V (prime contract no. The view expressed herein can in no way be taken to reflect the official opinion of ESA. Through the incremental adoption of the inter-satellite link (ISL), Low Earth Orbit Satellite Constellations (LSatCs) are turning into packet-based Non-Terrestrial Networks (NTN) capable of providing ubiquituous sensing, navigation, positioning, and communication services towards 6G.


Intelligent Duty Cycling Management and Wake-up for Energy Harvesting IoT Networks with Correlated Activity

arXiv.org Artificial Intelligence

This paper presents an approach for energy-neutral Internet of Things (IoT) scenarios where the IoT devices (IoTDs) rely entirely on their energy harvesting capabilities to sustain operation. We use a Markov chain to represent the operation and transmission states of the IoTDs, a modulated Poisson process to model their energy harvesting process, and a discrete-time Markov chain to model their battery state. The aim is to efficiently manage the duty cycling of the IoTDs, so as to prolong their battery life and reduce instances of low-energy availability. We propose a duty-cycling management based on K- nearest neighbors, aiming to strike a trade-off between energy efficiency and detection accuracy. This is done by incorporating spatial and temporal correlations among IoTDs' activity, as well as their energy harvesting capabilities. We also allow the base station to wake up specific IoTDs if more information about an event is needed upon initial detection. Our proposed scheme shows significant improvements in energy savings and performance, with up to 11 times lower misdetection probability and 50\% lower energy consumption for high-density scenarios compared to a random duty cycling benchmark.


Decentralized Multi-Party Multi-Network AI for Global Deployment of 6G Wireless Systems

arXiv.org Artificial Intelligence

Multiple visions of 6G networks elicit Artificial Intelligence (AI) as a central, native element. When 6G systems are deployed at a large scale, end-to-end AI-based solutions will necessarily have to encompass both the radio and the fiber-optical domain. This paper introduces the Decentralized Multi-Party, Multi-Network AI (DMMAI) framework for integrating AI into 6G networks deployed at scale. DMMAI harmonizes AI-driven controls across diverse network platforms and thus facilitates networks that autonomously configure, monitor, and repair themselves. This is particularly crucial at the network edge, where advanced applications meet heightened functionality and security demands. The radio/optical integration is vital due to the current compartmentalization of AI research within these domains, which lacks a comprehensive understanding of their interaction. Our approach explores multi-network orchestration and AI control integration, filling a critical gap in standardized frameworks for AI-driven coordination in 6G networks. The DMMAI framework is a step towards a global standard for AI in 6G, aiming to establish reference use cases, data and model management methods, and benchmarking platforms for future AI/ML solutions.


Scheduling for On-Board Federated Learning with Satellite Clusters

arXiv.org Artificial Intelligence

Mega-constellations of small satellites have evolved into a source of massive amount of valuable data. To manage this data efficiently, on-board federated learning (FL) enables satellites to train a machine learning (ML) model collaboratively without having to share the raw data. This paper introduces a scheme for scheduling on-board FL for constellations connected with intra-orbit inter-satellite links. The proposed scheme utilizes the predictable visibility pattern between satellites and ground station (GS), both at the individual satellite level and cumulatively within the entire orbit, to mitigate intermittent connectivity and best use of available time. To this end, two distinct schedulers are employed: one for coordinating the FL procedures among orbits, and the other for controlling those within each orbit. These two schedulers cooperatively determine the appropriate time to perform global updates in GS and then allocate suitable duration to satellites within each orbit for local training, proportional to usable time until next global update. This scheme leads to improved test accuracy within a shorter time.


Greedy Shapley Client Selection for Communication-Efficient Federated Learning

arXiv.org Artificial Intelligence

The standard client selection algorithms for Federated Learning (FL) are often unbiased and involve uniform random sampling of clients. This has been proven sub-optimal for fast convergence under practical settings characterized by significant heterogeneity in data distribution, computing, and communication resources across clients. For applications having timing constraints due to limited communication opportunities with the parameter server (PS), the client selection strategy is critical to complete model training within the fixed budget of communication rounds. To address this, we develop a biased client selection strategy, GreedyFed, that identifies and greedily selects the most contributing clients in each communication round. This method builds on a fast approximation algorithm for the Shapley Value at the PS, making the computation tractable for real-world applications with many clients. Compared to various client selection strategies on several real-world datasets, GreedyFed demonstrates fast and stable convergence with high accuracy under timing constraints and when imposing a higher degree of heterogeneity in data distribution, systems constraints, and privacy requirements.


ARQ for Active Learning at the Edge

arXiv.org Artificial Intelligence

Conventional retransmission (ARQ) protocols are designed with the goal of ensuring the correct reception of all the individual transmitter's packets at the receiver. When the transmitter is a learner communicating with a teacher, this goal is at odds with the actual aim of the learner, which is that of eliciting the most relevant label information from the teacher. Taking an active learning perspective, this paper addresses the following key protocol design questions: (i) Active batch selection: Which batch of inputs should be sent to the teacher to acquire the most useful information and thus reduce the number of required communication rounds? (ii) Batch encoding: Can batches of data points be combined to reduce the communication resources required at each communication round? Specifically, this work introduces Communication-Constrained Bayesian Active Knowledge Distillation (CC-BAKD), a novel protocol that integrates Bayesian active learning with compression via a linear mix-up mechanism. Comparisons with existing active learning protocols demonstrate the advantages of the proposed approach.


Generative Network Layer for Communication Systems with Artificial Intelligence

arXiv.org Artificial Intelligence

The traditional role of the network layer is the transfer of packet replicas from source to destination through intermediate network nodes. We present a generative network layer that uses Generative AI (GenAI) at intermediate or edge network nodes and analyze its impact on the required data rates in the network. We conduct a case study where the GenAI-aided nodes generate images from prompts that consist of substantially compressed latent representations. The results from network flow analyses under image quality constraints show that the generative network layer can achieve an improvement of more than 100% in terms of the required data rate.


Privacy-Aware Data Acquisition under Data Similarity in Regression Markets

arXiv.org Artificial Intelligence

Data markets facilitate decentralized data exchange for applications such as prediction, learning, or inference. The design of these markets is challenged by varying privacy preferences as well as data similarity among data owners. Related works have often overlooked how data similarity impacts pricing and data value through statistical information leakage. We demonstrate that data similarity and privacy preferences are integral to market design and propose a query-response protocol using local differential privacy for a two-party data acquisition mechanism. In our regression data market model, we analyze strategic interactions between privacy-aware owners and the learner as a Stackelberg game over the asked price and privacy factor. Finally, we numerically evaluate how data similarity affects market participation and traded data value. A. Context and Motivation In recent years, there has been a surge in Internet of Things (IoT) devices with sensing and computing capabilities, leading to an abundance of IoT data. Shashi Raj Pandey and Petar Popovski are with the Connectivity Section, Department of Electronic Systems, Aalborg University, Denmark. Pierre Pinson has primary affiliation with Dyson School of Design Engineering, Imperial College London, UK. He is also affiliated to the Technical University of Denmark, Department of Technology, Management and Economics, as well as with Halfspace This work was supported by the Villum Investigator Grant "WATER" from the Velux Foundation, Denmark.


Strategic Coalition for Data Pricing in IoT Data Markets

arXiv.org Artificial Intelligence

This paper considers a market for trading Internet of Things (IoT) data that is used to train machine learning models. The data, either raw or processed, is supplied to the market platform through a network and the price of such data is controlled based on the value it brings to the machine learning model. We explore the correlation property of data in a game-theoretical setting to eventually derive a simplified distributed solution for a data trading mechanism that emphasizes the mutual benefit of devices and the market. The key proposal is an efficient algorithm for markets that jointly addresses the challenges of availability and heterogeneity in participation, as well as the transfer of trust and the economic value of data exchange in IoT networks. The proposed approach establishes the data market by reinforcing collaboration opportunities between device with correlated data to avoid information leakage. Therein, we develop a network-wide optimization problem that maximizes the social value of coalition among the IoT devices of similar data types; at the same time, it minimizes the cost due to network externalities, i.e., the impact of information leakage due to data correlation, as well as the opportunity costs. Finally, we reveal the structure of the formulated problem as a distributed coalition game and solve it following the simplified split-and-merge algorithm. Simulation results show the efficacy of our proposed mechanism design toward a trusted IoT data market, with up to 32.72% gain in the average payoff for each seller.