Goto

Collaborating Authors

 Pereira, Fernando


Point Cloud Geometry Scalable Coding with a Quality-Conditioned Latents Probability Estimator

arXiv.org Artificial Intelligence

The widespread usage of point clouds (PC) for immersive visual applications has resulted in the use of very heterogeneous receiving conditions and devices, notably in terms of network, hardware, and display capabilities. In this scenario, quality scalability, i.e., the ability to reconstruct a signal at different qualities by progressively decoding a single bitstream, is a major requirement that has yet to be conveniently addressed, notably in most learning-based PC coding solutions. This paper proposes a quality scalability scheme, named Scalable Quality Hyperprior (SQH), adaptable to learning-based static point cloud geometry codecs, which uses a Quality-conditioned Latents Probability Estimator (QuLPE) to decode a high-quality version of a PC learning-based representation, based on an available lower quality base layer. SQH is integrated in the future JPEG PC coding standard, allowing to create a layered bitstream that can be used to progressively decode the PC geometry with increasing quality and fidelity. Experimental results show that SQH offers the quality scalability feature with very limited or no compression performance penalty at all when compared with the corresponding non-scalable solution, thus preserving the significant compression gains over other state-of-the-art PC codecs.


Gemma: Open Models Based on Gemini Research and Technology

arXiv.org Artificial Intelligence

This work introduces Gemma, a family of lightweight, state-of-the art open models built from the research and technology used to create Gemini models. Gemma models demonstrate strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma outperforms similarly sized open models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects of the models, alongside a detailed description of model development. We believe the responsible release of LLMs is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations.


Talk the Walk: Synthetic Data Generation for Conversational Music Recommendation

arXiv.org Artificial Intelligence

Recommender systems are ubiquitous yet often difficult for users to control, and adjust if recommendation quality is poor. This has motivated conversational recommender systems (CRSs), with control provided through natural language feedback. However, as with most application domains, building robust CRSs requires training data that reflects system usage$\unicode{x2014}$here conversations with user utterances paired with items that cover a wide range of preferences. This has proved challenging to collect scalably using conventional methods. We address the question of whether it can be generated synthetically, building on recent advances in natural language. We evaluate in the setting of item set recommendation, noting the increasing attention to this task motivated by use cases like music, news, and recipe recommendation. We present TalkTheWalk, which synthesizes realistic high-quality conversational data by leveraging domain expertise encoded in widely available curated item collections, generating a sequence of hypothetical yet plausible item sets, then using a language model to produce corresponding user utterances. We generate over one million diverse playlist curation conversations in the music domain, and show these contain consistent utterances with relevant item sets nearly matching the quality of an existing but small human-collected dataset for this task. We demonstrate the utility of the generated synthetic dataset on a conversational item retrieval task and show that it improves over both unsupervised baselines and systems trained on a real dataset.


Learning Bounds for Domain Adaptation

Neural Information Processing Systems

Empirical risk minimization offers well-known learning guarantees when training and test data come from the same domain. In the real world, though, we often wish to adapt a classifier from a source domain with a large amount of training data to different target domain with very little training data. In this work we give uniform convergence bounds for algorithms that minimize a convex combination of source and target empirical risk. The bounds explicitly model the inherent trade-off between training on a large but inaccurate source data set and a small but accurate target training set. Our theory also gives results when we have multiple source domains, each of which may have a different number of instances, and we exhibit cases in which minimizing a non-uniform combination of source risks can achieve much lower target error than standard empirical risk minimization.


Case-Factor Diagrams for Structured Probabilistic Modeling

arXiv.org Artificial Intelligence

We introduce a probabilistic formalism subsuming Markov random fields of bounded tree width and probabilistic context free grammars. Our models are based on a representation of Boolean formulas that we call case-factor diagrams (CFDs). CFDs are similar to binary decision diagrams (BDDs) but are concise for circuits of bounded tree width (unlike BDDs) and can concisely represent the set of parse trees over a given string undera given context free grammar (also unlike BDDs). A probabilistic model consists of aCFD defining a feasible set of Boolean assignments and a weight (or cost) for each individual Boolean variable. We give an insideoutside algorithm for simultaneously computing the marginal of each Boolean variable, and a Viterbi algorithm for finding the mininum cost variable assignment. Both algorithms run in time proportional to the size of the CFD.


Exact Convex Confidence-Weighted Learning

Neural Information Processing Systems

Confidence-weighted (CW) learning [6], an online learning method for linear classifiers, maintains a Gaussian distributions over weight vectors, with a covariance matrix that represents uncertainty about weights and correlations. Confidence constraints ensure that a weight vector drawn from the hypothesis distribution correctly classifies examples with a specified probability. Within this framework, we derive a new convex form of the constraint and analyze it in the mistake bound model. Empirical evaluation with both synthetic and text data shows our version of CW learning achieves lower cumulative and out-of-sample errors than commonly used first-order and second-order online methods.


Group Sparse Coding

Neural Information Processing Systems

Bag-of-words document representations are often used in text, image and video processing. While it is relatively easy to determine a suitable word dictionary for text documents, there is no simple mapping from raw images or videos to dictionary terms. The classical approach builds a dictionary using vector quantization over a large set of useful visual descriptors extracted from a training set, and uses a nearest-neighbor algorithm to count the number of occurrences of each dictionary word in documents to be encoded. More robust approaches have been proposed recently that represent each visual descriptor as a sparse weighted combination of dictionary words. While favoring a sparse representation at the level of visual descriptors, those methods however do not ensure that images have sparse representation. In this work, we use mixed-norm regularization to achieve sparsity at the image level as well as a small overall dictionary. This approach can also be used to encourage using the same dictionary words for all the images in a class, providing a discriminative signal in the construction of image representations. Experimental results on a benchmark image classification dataset show that when compact image or dictionary representations are needed for computational efficiency, the proposed approach yields better mean average precision in classification.


Posterior vs Parameter Sparsity in Latent Variable Models

Neural Information Processing Systems

In this paper we explore the problem of biasing unsupervised models to favor sparsity. We extend the posterior regularization framework [8] to encourage the model to achieve posterior sparsity on the unlabeled training data. We apply this new method to learn first-order HMMs for unsupervised part-of-speech (POS) tagging, and show that HMMs learned this way consistently and significantly out-performs both EM-trained HMMs, and HMMs with a sparsity-inducing Dirichlet prior trained by variational EM. We evaluate these HMMs on three languages — English, Bulgarian and Portuguese — under four conditions. We find that our method always improves performance with respect to both baselines, while variational Bayes actually degrades performance in most cases. We increase accuracy with respect to EM by 2.5%-8.7% absolute and we see improvements even in a semisupervised condition where a limited dictionary is provided.


Learning Bounds for Domain Adaptation

Neural Information Processing Systems

Empirical risk minimization offers well-known learning guarantees when training and test data come from the same domain. In the real world, though, we often wish to adapt a classifier from a source domain with a large amount of training data to different target domain with very little training data. In this work we give uniform convergence bounds for algorithms that minimize a convex combination of source and target empirical risk. The bounds explicitly model the inherent trade-off between training on a large but inaccurate source data set and a small but accurate target training set. Our theory also gives results when we have multiple source domains, each of which may have a different number of instances, and we exhibit cases in which minimizing a non-uniform combination of source risks can achieve much lower target error than standard empirical risk minimization.


Structured Learning with Approximate Inference

Neural Information Processing Systems

In many structured prediction problems, the highest-scoring labeling is hard to compute exactly, leading to the use of approximate inference methods. However, when inference is used in a learning algorithm, a good approximation of the score may not be sufficient. We show in particular that learning can fail even with an approximate inference method with rigorous approximation guarantees. There are two reasons for this. First, approximate methods can effectively reduce the expressivity ofan underlying model by making it impossible to choose parameters that reliably give good predictions. Second, approximations can respond to parameter changes in such a way that standard learning algorithms are misled. In contrast, we give two positive results in the form of learning bounds for the use of LPrelaxed inference in structured perceptron and empirical risk minimization settings. We argue that without understanding combinations of inference and learning, such as these, that are appropriately compatible, learning performance under approximate inference cannot be guaranteed.