Paischer, Fabian
5D Neural Surrogates for Nonlinear Gyrokinetic Simulations of Plasma Turbulence
Galletti, Gianluca, Paischer, Fabian, Setinek, Paul, Hornsby, William, Zanisi, Lorenzo, Carey, Naomi, Pamela, Stanislas, Brandstetter, Johannes
Nuclear fusion plays a pivotal role in the quest for reliable and sustainable energy production. A major roadblock to achieving commercially viable fusion power is understanding plasma turbulence, which can significantly degrade plasma confinement. Modelling turbulence is crucial to design performing plasma scenarios for next-generation reactor-class devices and current experimental machines. The nonlinear gyrokinetic equation underpinning turbulence modelling evolves a 5D distribution function over time. Solving this equation numerically is extremely expensive, requiring up to weeks for a single run to converge, making it unfeasible for iterative optimisation and control studies. In this work, we propose a method for training neural surrogates for 5D gyrokinetic simulations. Our method extends a hierarchical vision transformer to five dimensions and is trained on the 5D distribution function for the adiabatic electron approximation. We demonstrate that our model can accurately infer downstream physical quantities such as heat flux time trace and electrostatic potentials for single-step predictions two orders of magnitude faster than numerical codes. Our work paves the way towards neural surrogates for plasma turbulence simulations to accelerate deployment of commercial energy production via nuclear fusion.
One Initialization to Rule them All: Fine-tuning via Explained Variance Adaptation
Paischer, Fabian, Hauzenberger, Lukas, Schmied, Thomas, Alkin, Benedikt, Deisenroth, Marc Peter, Hochreiter, Sepp
Foundation models (FMs) are pre-trained on large-scale datasets and then fine-tuned on a downstream task for a specific application. The most successful and most commonly used fine-tuning method is to update the pre-trained weights via a low-rank adaptation (LoRA). LoRA introduces new weight matrices that are usually initialized at random with a uniform rank distribution across the model weights. Recent works focus on different initialization schemes or the learning of adaptive ranks during fine-tuning. Both approaches have only been investigated in isolation, resulting in slow convergence or a uniform rank distribution, in turn leading to suboptimal performance. We propose to improve LoRA by initializing the new weights in a data-driven manner by computing singular value decomposition (SVD) on minibatches of activation vectors. Then, we initialize the LoRA matrices with the obtained right-singular vectors and redistribute ranks among all weight matrices to provably store the maximum amount of information of the downstream data in the newly introduced weights. In this way, only what information to maintain or neglect during the fine-tuning process needs to be learned. We call our new method $\textbf{E}$xplained $\textbf{V}$ariance $\textbf{A}$daptation (EVA). We apply EVA to a variety of fine-tuning tasks ranging from language generation and understanding to image classification and reinforcement learning. EVA exhibits faster convergence than competitors and achieves the highest average score across a multitude of tasks per domain while reducing the number of trainable parameters through rank redistribution.
Preference Discerning with LLM-Enhanced Generative Retrieval
Paischer, Fabian, Yang, Liu, Liu, Linfeng, Shao, Shuai, Hassani, Kaveh, Li, Jiacheng, Chen, Ricky, Li, Zhang Gabriel, Gao, Xialo, Shao, Wei, Feng, Xue, Noorshams, Nima, Park, Sem, Long, Bo, Eghbalzadeh, Hamid
Sequential recommendation systems aim to provide personalized recommendations for users based on their interaction history. To achieve this, they often incorporate auxiliary information, such as textual descriptions of items and auxiliary tasks, like predicting user preferences and intent. Despite numerous efforts to enhance these models, they still suffer from limited personalization. To address this issue, we propose a new paradigm, which we term preference discerning. In preference dscerning, we explicitly condition a generative sequential recommendation system on user preferences within its context. To this end, we generate user preferences using Large Language Models (LLMs) based on user reviews and item-specific data. To evaluate preference discerning capabilities of sequential recommendation systems, we introduce a novel benchmark that provides a holistic evaluation across various scenarios, including preference steering and sentiment following. We assess current state-of-the-art methods using our benchmark and show that they struggle to accurately discern user preferences. Therefore, we propose a new method named Mender ($\textbf{M}$ultimodal Prefer$\textbf{en}$ce $\textbf{d}$iscern$\textbf{er}$), which improves upon existing methods and achieves state-of-the-art performance on our benchmark. Our results show that Mender can be effectively guided by human preferences even though they have not been observed during training, paving the way toward more personalized sequential recommendation systems. We will open-source the code and benchmarks upon publication.
Retrieval-Augmented Decision Transformer: External Memory for In-context RL
Schmied, Thomas, Paischer, Fabian, Patil, Vihang, Hofmarcher, Markus, Pascanu, Razvan, Hochreiter, Sepp
In-context learning (ICL) is the ability of a model to learn a new task by observing a few exemplars in its context. While prevalent in NLP, this capability has recently also been observed in Reinforcement Learning (RL) settings. Prior in-context RL methods, however, require entire episodes in the agent's context. Given that complex environments typically lead to long episodes with sparse rewards, these methods are constrained to simple environments with short episodes. To address these challenges, we introduce Retrieval-Augmented Decision Transformer (RA-DT). RA-DT employs an external memory mechanism to store past experiences from which it retrieves only sub-trajectories relevant for the current situation. The retrieval component in RA-DT does not require training and can be entirely domain-agnostic. We evaluate the capabilities of RA-DT on grid-world environments, robotics simulations, and procedurally-generated video games. On grid-worlds, RA-DT outperforms baselines, while using only a fraction of their context length. Furthermore, we illuminate the limitations of current in-context RL methods on complex environments and discuss future directions. To facilitate future research, we release datasets for four of the considered environments.
Unifying Generative and Dense Retrieval for Sequential Recommendation
Yang, Liu, Paischer, Fabian, Hassani, Kaveh, Li, Jiacheng, Shao, Shuai, Li, Zhang Gabriel, He, Yun, Feng, Xue, Noorshams, Nima, Park, Sem, Long, Bo, Nowak, Robert D, Gao, Xiaoli, Eghbalzadeh, Hamid
Sequential dense retrieval models utilize advanced sequence learning techniques to compute item and user representations, which are then used to rank relevant items for a user through inner product computation between the user and all item representations. However, this approach requires storing a unique representation for each item, resulting in significant memory requirements as the number of items grow. In contrast, the recently proposed generative retrieval paradigm offers a promising alternative by directly predicting item indices using a generative model trained on semantic IDs that encapsulate items' semantic information. Despite its potential for large-scale applications, a comprehensive comparison between generative retrieval and sequential dense retrieval under fair conditions is still lacking, leaving open questions regarding performance, and computation trade-offs. To address this, we compare these two approaches under controlled conditions on academic benchmarks and propose LIGER (LeveragIng dense retrieval for GEnerative Retrieval), a hybrid model that combines the strengths of these two widely used methods. LIGER integrates sequential dense retrieval into generative retrieval, mitigating performance differences and enhancing cold-start item recommendation in the datasets evaluated. This hybrid approach provides insights into the trade-offs between these approaches and demonstrates improvements in efficiency and effectiveness for recommendation systems in small-scale benchmarks.
Semantic HELM: A Human-Readable Memory for Reinforcement Learning
Paischer, Fabian, Adler, Thomas, Hofmarcher, Markus, Hochreiter, Sepp
Reinforcement learning agents deployed in the real world often have to cope with partially observable environments. Therefore, most agents employ memory mechanisms to approximate the state of the environment. Recently, there have been impressive success stories in mastering partially observable environments, mostly in the realm of computer games like Dota 2, StarCraft II, or MineCraft. However, existing methods lack interpretability in the sense that it is not comprehensible for humans what the agent stores in its memory. In this regard, we propose a novel memory mechanism that represents past events in human language. Our method uses CLIP to associate visual inputs with language tokens. Then we feed these tokens to a pretrained language model that serves the agent as memory and provides it with a coherent and human-readable representation of the past. We train our memory mechanism on a set of partially observable environments and find that it excels on tasks that require a memory component, while mostly attaining performance on-par with strong baselines on tasks that do not. On a challenging continuous recognition task, where memorizing the past is crucial, our memory mechanism converges two orders of magnitude faster than prior methods. Since our memory mechanism is human-readable, we can peek at an agent's memory and check whether crucial pieces of information have been stored. This significantly enhances troubleshooting and paves the way toward more interpretable agents.
Learning to Modulate pre-trained Models in RL
Schmied, Thomas, Hofmarcher, Markus, Paischer, Fabian, Pascanu, Razvan, Hochreiter, Sepp
Reinforcement Learning (RL) has been successful in various domains like robotics, game playing, and simulation. While RL agents have shown impressive capabilities in their specific tasks, they insufficiently adapt to new tasks. In supervised learning, this adaptation problem is addressed by large-scale pre-training followed by fine-tuning to new down-stream tasks. Recently, pre-training on multiple tasks has been gaining traction in RL. However, fine-tuning a pre-trained model often suffers from catastrophic forgetting. That is, the performance on the pre-training tasks deteriorates when fine-tuning on new tasks. To investigate the catastrophic forgetting phenomenon, we first jointly pre-train a model on datasets from two benchmark suites, namely Meta-World and DMControl. Then, we evaluate and compare a variety of fine-tuning methods prevalent in natural language processing, both in terms of performance on new tasks, and how well performance on pre-training tasks is retained. Our study shows that with most fine-tuning approaches, the performance on pre-training tasks deteriorates significantly. Therefore, we propose a novel method, Learning-to-Modulate (L2M), that avoids the degradation of learned skills by modulating the information flow of the frozen pre-trained model via a learnable modulation pool. Our method achieves state-of-the-art performance on the Continual-World benchmark, while retaining performance on the pre-training tasks. Finally, to aid future research in this area, we release a dataset encompassing 50 Meta-World and 16 DMControl tasks.
SITTA: A Semantic Image-Text Alignment for Image Captioning
Paischer, Fabian, Adler, Thomas, Hofmarcher, Markus, Hochreiter, Sepp
Textual and semantic comprehension of images is essential for generating proper captions. The comprehension requires detection of objects, modeling of relations between them, an assessment of the semantics of the scene and, finally, representing the extracted knowledge in a language space. To achieve rich language capabilities while ensuring good image-language mappings, pretrained language models (LMs) were conditioned on pretrained multi-modal (image-text) models that allow for image inputs. This requires an alignment of the image representation of the multi-modal model with the language representations of a generative LM. However, it is not clear how to best transfer semantics detected by the vision encoder of the multi-modal model to the LM. We introduce two novel ways of constructing a linear mapping that successfully transfers semantics between the embedding spaces of the two pretrained models. The first aligns the embedding space of the multi-modal language encoder with the embedding space of the pretrained LM via token correspondences. The latter leverages additional data that consists of image-text pairs to construct the mapping directly from vision to language space. Using our semantic mappings, we unlock image captioning for LMs without access to gradient information. By using different sources of data we achieve strong captioning performance on MS-COCO and Flickr30k datasets. Even in the face of limited data, our method partly exceeds the performance of other zero-shot and even finetuned competitors. Our ablation studies show that even LMs at a scale of merely 250M parameters can generate decent captions employing our semantic mappings. Our approach makes image captioning more accessible for institutions with restricted computational resources.
History Compression via Language Models in Reinforcement Learning
Paischer, Fabian, Adler, Thomas, Patil, Vihang, Bitto-Nemling, Angela, Holzleitner, Markus, Lehner, Sebastian, Eghbal-zadeh, Hamid, Hochreiter, Sepp
In a partially observable Markov decision process (POMDP), an agent typically uses a representation of the past to approximate the underlying MDP. We propose to utilize a frozen Pretrained Language Transformer (PLT) for history representation and compression to improve sample efficiency. To avoid training of the Transformer, we introduce FrozenHopfield, which automatically associates observations with pretrained token embeddings. To form these associations, a modern Hopfield network stores these token embeddings, which are retrieved by queries that are obtained by a random but fixed projection of observations. Our new method, HELM, enables actor-critic network architectures that contain a pretrained language Transformer for history representation as a memory module. Since a representation of the past need not be learned, HELM is much more sample efficient than competitors. On Minigrid and Procgen environments HELM achieves new state-of-the-art results. Our code is available at https://github.com/ml-jku/helm.