Ozdaglar, Asuman
Differentially Private Equilibrium Finding in Polymatrix Games
Liu, Mingyang, Farina, Gabriele, Ozdaglar, Asuman
We study equilibrium finding in polymatrix games under differential privacy constraints. To start, we show that high accuracy and asymptotically vanishing differential privacy budget (as the number of players goes to infinity) cannot be achieved simultaneously under either of the two settings: (i) We seek to establish equilibrium approximation guarantees in terms of Euclidean distance to the equilibrium set, and (ii) the adversary has access to all communication channels. Then, assuming the adversary has access to a constant number of communication channels, we develop a novel distributed algorithm that recovers strategies with simultaneously vanishing Nash gap (in expected utility, also referred to as exploitability and privacy budget as the number of players increases.
MAPoRL: Multi-Agent Post-Co-Training for Collaborative Large Language Models with Reinforcement Learning
Park, Chanwoo, Han, Seungju, Guo, Xingzhi, Ozdaglar, Asuman, Zhang, Kaiqing, Kim, Joo-Kyung
Leveraging multiple large language models (LLMs) to build collaborative multi-agentic workflows has demonstrated significant potential. However, most previous studies focus on prompting the out-of-the-box LLMs, relying on their innate capability for collaboration, which may not improve LLMs' performance as shown recently. In this paper, we introduce a new post-training paradigm MAPoRL (Multi-Agent Post-co-training for collaborative LLMs with Reinforcement Learning), to explicitly elicit the collaborative behaviors and further unleash the power of multi-agentic LLM frameworks. In MAPoRL, multiple LLMs first generate their own responses independently and engage in a multi-turn discussion to collaboratively improve the final answer. In the end, a MAPoRL verifier evaluates both the answer and the discussion, by assigning a score that verifies the correctness of the answer, while adding incentives to encourage corrective and persuasive discussions. The score serves as the co-training reward, and is then maximized through multi-agent RL. Unlike existing LLM post-training paradigms, MAPoRL advocates the co-training of multiple LLMs together using RL for better generalization. Accompanied by analytical insights, our experiments demonstrate that training individual LLMs alone is insufficient to induce effective collaboration. In contrast, multi-agent co-training can boost the collaboration performance across benchmarks, with generalization to unseen domains.
A Unified Linear Programming Framework for Offline Reward Learning from Human Demonstrations and Feedback
Kim, Kihyun, Zhang, Jiawei, Ozdaglar, Asuman, Parrilo, Pablo A.
Reward learning involves inferring and shaping the underlying reward function from observed human demonstrations and feedback. Inverse reinforcement learning (IRL) and reinforcement learning from human feedback (RLHF, also known as preference-based reinforcement learning) are key methodologies in reward learning, applied in various sequential decision-making tasks such as games [1-3], robotics [4-6], and language models [7-11]. Particularly in the recent drastic development of large language models (LLMs), RLHF has played a crucial role in fine-tuning models to better align with human preferences [10]. However, despite the notable empirical success of these algorithms, a significant gap remains in the theoretical analysis of IRL and RLHF, limiting us to guarantee their reliability. This work aims to bridge this gap by proposing a novel theoretical framework for offline IRL and RLHF. IRL aims to infer a reward function that aligns with an expert behavior from demonstrations [12, 13]. Typical IRL algorithms employ a bi-level optimization framework within the context of maximum likelihood estimation (MLE). In this framework, the inner optimization evaluates the policy based on the current reward parameters, while the outer optimization updates these parameters to better match observed expert behavior. These algorithms have been extensively explored in the literature [14-18], and their convergence is studied in both online settings [17] and offline settings [18].
RLHF from Heterogeneous Feedback via Personalization and Preference Aggregation
Park, Chanwoo, Liu, Mingyang, Kong, Dingwen, Zhang, Kaiqing, Ozdaglar, Asuman
Reinforcement learning from human feedback (RLHF) has been an effective technique for aligning AI systems with human values, with remarkable successes in fine-tuning large-language models recently. Most existing RLHF paradigms make the underlying assumption that human preferences are relatively homogeneous, and can be encoded by a single reward model. In this paper, we focus on addressing the issues due to the inherent heterogeneity in human preferences, as well as their potential strategic behavior in providing feedback. Specifically, we propose two frameworks to address heterogeneous human feedback in principled ways: personalization-based one and aggregation-based one. For the former, we propose two approaches based on representation learning and clustering, respectively, for learning multiple reward models that trades off the bias (due to preference heterogeneity) and variance (due to the use of fewer data for learning each model by personalization). We then establish sample complexity guarantees for both approaches. For the latter, we aim to adhere to the single-model framework, as already deployed in the current RLHF paradigm, by carefully aggregating diverse and truthful preferences from humans. We propose two approaches based on reward and preference aggregation, respectively: the former utilizes both utilitarianism and Leximin approaches to aggregate individual reward models, with sample complexity guarantees; the latter directly aggregates the human feedback in the form of probabilistic opinions. Under the probabilistic-opinion-feedback model, we also develop an approach to handle strategic human labelers who may bias and manipulate the aggregated preferences with untruthful feedback. Based on the ideas in mechanism design, our approach ensures truthful preference reporting, with the induced aggregation rule maximizing social welfare functions.
Do LLM Agents Have Regret? A Case Study in Online Learning and Games
Park, Chanwoo, Liu, Xiangyu, Ozdaglar, Asuman, Zhang, Kaiqing
Large language models (LLMs) have been increasingly employed for (interactive) decision-making, via the development of LLM-based autonomous agents. Despite their emerging successes, the performance of LLM agents in decision-making has not been fully investigated through quantitative metrics, especially in the multi-agent setting when they interact with each other, a typical scenario in real-world LLM-agent applications. To better understand the limits of LLM agents in these interactive environments, we propose to study their interactions in benchmark decision-making settings in online learning and game theory, through the performance metric of \emph{regret}. We first empirically study the {no-regret} behaviors of LLMs in canonical (non-stationary) online learning problems, as well as the emergence of equilibria when LLM agents interact through playing repeated games. We then provide some theoretical insights into the no-regret behaviors of LLM agents, under certain assumptions on the supervised pre-training and the rationality model of human decision-makers who generate the data. Notably, we also identify (simple) cases where advanced LLMs such as GPT-4 fail to be no-regret. To promote the no-regret behaviors, we propose a novel \emph{unsupervised} training loss of \emph{regret-loss}, which, in contrast to the supervised pre-training loss, does not require the labels of (optimal) actions. We then establish the statistical guarantee of generalization bound for regret-loss minimization, followed by the optimization guarantee that minimizing such a loss may automatically lead to known no-regret learning algorithms. Our further experiments demonstrate the effectiveness of our regret-loss, especially in addressing the above ``regrettable'' cases.
Uniformly Stable Algorithms for Adversarial Training and Beyond
Xiao, Jiancong, Zhang, Jiawei, Luo, Zhi-Quan, Ozdaglar, Asuman
In adversarial machine learning, neural networks suffer from a significant issue known as robust overfitting, where the robust test accuracy decreases over epochs (Rice et al., 2020). Recent research conducted by Xing et al.,2021; Xiao et al., 2022 has focused on studying the uniform stability of adversarial training. Their investigations revealed that SGD-based adversarial training fails to exhibit uniform stability, and the derived stability bounds align with the observed phenomenon of robust overfitting in experiments. This motivates us to develop uniformly stable algorithms specifically tailored for adversarial training. To this aim, we introduce Moreau envelope-$\mathcal{A}$, a variant of the Moreau Envelope-type algorithm. We employ a Moreau envelope function to reframe the original problem as a min-min problem, separating the non-strong convexity and non-smoothness of the adversarial loss. Then, this approach alternates between solving the inner and outer minimization problems to achieve uniform stability without incurring additional computational overhead. In practical scenarios, we show the efficacy of ME-$\mathcal{A}$ in mitigating the issue of robust overfitting. Beyond its application in adversarial training, this represents a fundamental result in uniform stability analysis, as ME-$\mathcal{A}$ is the first algorithm to exhibit uniform stability for weakly-convex, non-smooth problems.
Matching of Users and Creators in Two-Sided Markets with Departures
Huttenlocher, Daniel, Li, Hannah, Lyu, Liang, Ozdaglar, Asuman, Siderius, James
Many online platforms of today, including social media sites, are two-sided markets bridging content creators and users. Most of the existing literature on platform recommendation algorithms largely focuses on user preferences and decisions, and does not simultaneously address creator incentives. We propose a model of content recommendation that explicitly focuses on the dynamics of user-content matching, with the novel property that both users and creators may leave the platform permanently if they do not experience sufficient engagement. In our model, each player decides to participate at each time step based on utilities derived from the current match: users based on alignment of the recommended content with their preferences, and creators based on their audience size. We show that a user-centric greedy algorithm that does not consider creator departures can result in arbitrarily poor total engagement, relative to an algorithm that maximizes total engagement while accounting for two-sided departures. Moreover, in stark contrast to the case where only users or only creators leave the platform, we prove that with two-sided departures, approximating maximum total engagement within any constant factor is NP-hard. We present two practical algorithms, one with performance guarantees under mild assumptions on user preferences, and another that tends to outperform algorithms that ignore two-sided departures in practice.
Two-Timescale Q-Learning with Function Approximation in Zero-Sum Stochastic Games
Chen, Zaiwei, Zhang, Kaiqing, Mazumdar, Eric, Ozdaglar, Asuman, Wierman, Adam
We consider two-player zero-sum stochastic games and propose a two-timescale $Q$-learning algorithm with function approximation that is payoff-based, convergent, rational, and symmetric between the two players. In two-timescale $Q$-learning, the fast-timescale iterates are updated in spirit to the stochastic gradient descent and the slow-timescale iterates (which we use to compute the policies) are updated by taking a convex combination between its previous iterate and the latest fast-timescale iterate. Introducing the slow timescale as well as its update equation marks as our main algorithmic novelty. In the special case of linear function approximation, we establish, to the best of our knowledge, the first last-iterate finite-sample bound for payoff-based independent learning dynamics of these types. The result implies a polynomial sample complexity to find a Nash equilibrium in such stochastic games. To establish the results, we model our proposed algorithm as a two-timescale stochastic approximation and derive the finite-sample bound through a Lyapunov-based approach. The key novelty lies in constructing a valid Lyapunov function to capture the evolution of the slow-timescale iterates. Specifically, through a change of variable, we show that the update equation of the slow-timescale iterates resembles the classical smoothed best-response dynamics, where the regularized Nash gap serves as a valid Lyapunov function. This insight enables us to construct a valid Lyapunov function via a generalized variant of the Moreau envelope of the regularized Nash gap. The construction of our Lyapunov function might be of broad independent interest in studying the behavior of stochastic approximation algorithms.
Convergence and Stability of Coupled Belief--Strategy Learning Dynamics in Continuous Games
Wu, Manxi, Amin, Saurabh, Ozdaglar, Asuman
We propose a learning dynamics to model how strategic agents repeatedly play a continuous game while relying on an information platform to learn an unknown payoff-relevant parameter. In each time step, the platform updates a belief estimate of the parameter based on players' strategies and realized payoffs using Bayes's rule. Then, players adopt a generic learning rule to adjust their strategies based on the updated belief. We present results on the convergence of beliefs and strategies and the properties of convergent fixed points of the dynamics. We obtain sufficient and necessary conditions for the existence of globally stable fixed points. We also provide sufficient conditions for the local stability of fixed points. These results provide an approach to analyzing the long-term outcomes that arise from the interplay between Bayesian belief learning and strategy learning in games, and enable us to characterize conditions under which learning leads to a complete information equilibrium.
Optimal and Differentially Private Data Acquisition: Central and Local Mechanisms
Fallah, Alireza, Makhdoumi, Ali, Malekian, Azarakhsh, Ozdaglar, Asuman
We consider a platform's problem of collecting data from privacy sensitive users to estimate an underlying parameter of interest. We formulate this question as a Bayesian-optimal mechanism design problem, in which an individual can share her (verifiable) data in exchange for a monetary reward or services, but at the same time has a (private) heterogeneous privacy cost which we quantify using differential privacy. We consider two popular differential privacy settings for providing privacy guarantees for the users: central and local. In both settings, we establish minimax lower bounds for the estimation error and derive (near) optimal estimators for given heterogeneous privacy loss levels for users. Building on this characterization, we pose the mechanism design problem as the optimal selection of an estimator and payments that will elicit truthful reporting of users' privacy sensitivities. Under a regularity condition on the distribution of privacy sensitivities we develop efficient algorithmic mechanisms to solve this problem in both privacy settings. Our mechanism in the central setting can be implemented in time $\mathcal{O}(n \log n)$ where $n$ is the number of users and our mechanism in the local setting admits a Polynomial Time Approximation Scheme (PTAS).