Goto

Collaborating Authors

 Ostermann, Simon


AutoPsyC: Automatic Recognition of Psychodynamic Conflicts from Semi-structured Interviews with Large Language Models

arXiv.org Artificial Intelligence

Psychodynamic conflicts are persistent, often unconscious themes that shape a person's behaviour and experiences. Accurate diagnosis of psychodynamic conflicts is crucial for effective patient treatment and is commonly done via long, manually scored semi-structured interviews. Existing automated solutions for psychiatric diagnosis tend to focus on the recognition of broad disorder categories such as depression, and it is unclear to what extent psychodynamic conflicts which even the patient themselves may not have conscious access to could be automatically recognised from conversation. In this paper, we propose AutoPsyC, the first method for recognising the presence and significance of psychodynamic conflicts from full-length Operationalized Psychodynamic Diagnostics (OPD) interviews using Large Language Models (LLMs). Our approach combines recent advances in parameter-efficient fine-tuning and Retrieval-Augmented Generation (RAG) with a summarisation strategy to effectively process entire 90 minute long conversations. In evaluations on a dataset of 141 diagnostic interviews we show that AutoPsyC consistently outperforms all baselines and ablation conditions on the recognition of four highly relevant psychodynamic conflicts.


The Lookahead Limitation: Why Multi-Operand Addition is Hard for LLMs

arXiv.org Artificial Intelligence

Autoregressive large language models (LLMs) exhibit impressive performance across various tasks but struggle with simple arithmetic, such as addition of two or more operands. We show that this struggle arises from LLMs' use of a simple one-digit lookahead heuristic, which works fairly well (but not perfect) for two-operand addition but fails in multi-operand cases, where the carry-over logic is more complex. Our probing experiments and digit-wise accuracy evaluation show that LLMs fail precisely where a one-digit lookahead is insufficient to account for cascading carries. We analyze the impact of tokenization strategies on arithmetic performance and show that all investigated models, regardless of tokenization, are inherently limited in the addition of multiple operands due to their reliance on a one-digit lookahead heuristic. Our findings reveal fundamental limitations that prevent LLMs from generalizing to more complex numerical reasoning.


Small Models, Big Impact: Efficient Corpus and Graph-Based Adaptation of Small Multilingual Language Models for Low-Resource Languages

arXiv.org Artificial Intelligence

Low-resource languages (LRLs) face significant challenges in natural language processing (NLP) due to limited data. While current state-of-the-art large language models (LLMs) still struggle with LRLs, smaller multilingual models (mLMs) such as mBERT and XLM-R offer greater promise due to a better fit of their capacity to low training data sizes. This study systematically investigates parameter-efficient adapter-based methods for adapting mLMs to LRLs, evaluating three architectures: Sequential Bottleneck, Invertible Bottleneck, and Low-Rank Adaptation. Using unstructured text from GlotCC and structured knowledge from ConceptNet, we show that small adaptation datasets (e.g., up to 1 GB of free-text or a few MB of knowledge graph data) yield gains in intrinsic (masked language modeling) and extrinsic tasks (topic classification, sentiment analysis, and named entity recognition). We find that Sequential Bottleneck adapters excel in language modeling, while Invertible Bottleneck adapters slightly outperform other methods on downstream tasks due to better embedding alignment and larger parameter counts. Adapter-based methods match or outperform full fine-tuning while using far fewer parameters, and smaller mLMs prove more effective for LRLs than massive LLMs like LLaMA-3, GPT-4, and DeepSeek-R1-based distilled models. While adaptation improves performance, pre-training data size remains the dominant factor, especially for languages with extensive pre-training coverage.


Reverse Probing: Evaluating Knowledge Transfer via Finetuned Task Embeddings for Coreference Resolution

arXiv.org Artificial Intelligence

In this work, we reimagine classical probing to evaluate knowledge transfer from simple source to more complex target tasks. Instead of probing frozen representations from a complex source task on diverse simple target probing tasks (as usually done in probing), we explore the effectiveness of embeddings from multiple simple source tasks on a single target task. We select coreference resolution, a linguistically complex problem requiring contextual understanding, as focus target task, and test the usefulness of embeddings from comparably simpler tasks tasks such as paraphrase detection, named entity recognition, and relation extraction. Through systematic experiments, we evaluate the impact of individual and combined task embeddings. Our findings reveal that task embeddings vary significantly in utility for coreference resolution, with semantic similarity tasks (e.g., paraphrase detection) proving most beneficial. Additionally, representations from intermediate layers of fine-tuned models often outperform those from final layers. Combining embeddings from multiple tasks consistently improves performance, with attention-based aggregation yielding substantial gains. These insights shed light on relationships between task-specific representations and their adaptability to complex downstream tasks, encouraging further exploration of embedding-level task transfer.


FitCF: A Framework for Automatic Feature Importance-guided Counterfactual Example Generation

arXiv.org Artificial Intelligence

Counterfactual examples are widely used in natural language processing (NLP) as valuable data to improve models, and in explainable artificial intelligence (XAI) to understand model behavior. The automated generation of counterfactual examples remains a challenging task even for large language models (LLMs), despite their impressive performance on many tasks. In this paper, we first introduce ZeroCF, a faithful approach for leveraging important words derived from feature attribution methods to generate counterfactual examples in a zero-shot setting. Second, we present a new framework, FitCF, which further verifies aforementioned counterfactuals by label flip verification and then inserts them as demonstrations for few-shot prompting, outperforming two state-of-the-art baselines. Through ablation studies, we identify the importance of each of FitCF's core components in improving the quality of counterfactuals, as assessed through flip rate, perplexity, and similarity measures. Furthermore, we show the effectiveness of LIME and Integrated Gradients as backbone attribution methods for FitCF and find that the number of demonstrations has the largest effect on performance. Finally, we reveal a strong correlation between the faithfulness of feature attribution scores and the quality of generated counterfactuals.


GrEmLIn: A Repository of Green Baseline Embeddings for 87 Low-Resource Languages Injected with Multilingual Graph Knowledge

arXiv.org Artificial Intelligence

Contextualized embeddings based on large language models (LLMs) are available for various languages, but their coverage is often limited for lower resourced languages. Using LLMs for such languages is often difficult due to a high computational cost; not only during training, but also during inference. Static word embeddings are much more resource-efficient ("green"), and thus still provide value, particularly for very low-resource languages. There is, however, a notable lack of comprehensive repositories with such embeddings for diverse languages. To address this gap, we present GrEmLIn, a centralized repository of green, static baseline embeddings for 87 mid- and low-resource languages. We compute GrEmLIn embeddings with a novel method that enhances GloVe embeddings by integrating multilingual graph knowledge, which makes our static embeddings competitive with LLM representations, while being parameter-free at inference time. Our experiments demonstrate that GrEmLIn embeddings outperform state-of-the-art contextualized embeddings from E5 on the task of lexical similarity. They remain competitive in extrinsic evaluation tasks like sentiment analysis and natural language inference, with average performance gaps of just 5-10\% or less compared to state-of-the-art models, given a sufficient vocabulary overlap with the target task, and underperform only on topic classification. Our code and embeddings are publicly available at https://huggingface.co/DFKI.


Probing Context Localization of Polysemous Words in Pre-trained Language Model Sub-Layers

arXiv.org Artificial Intelligence

In the era of high performing Large Language Models, researchers have widely acknowledged that contextual word representations are one of the key drivers in achieving top performances in downstream tasks. In this work, we investigate the degree of contextualization encoded in the fine-grained sub-layer representations of a Pre-trained Language Model (PLM) by empirical experiments using linear probes. Unlike previous work, we are particularly interested in identifying the strength of contextualization across PLM sub-layer representations (i.e. Self-Attention, Feed-Forward Activation and Output sub-layers). To identify the main contributions of sub-layers to contextualisation, we first extract the sub-layer representations of polysemous words in minimally different sentence pairs, and compare how these representations change through the forward pass of the PLM network. Second, by probing on a sense identification classification task, we try to empirically localize the strength of contextualization information encoded in these sub-layer representations. With these probing experiments, we also try to gain a better understanding of the influence of context length and context richness on the degree of contextualization. Our main conclusion is cautionary: BERT demonstrates a high degree of contextualization in the top sub-layers if the word in question is in a specific position in the sentence with a shorter context window, but this does not systematically generalize across different word positions and context sizes.


Task Prompt Vectors: Effective Initialization through Multi-Task Soft-Prompt Transfer

arXiv.org Artificial Intelligence

Prompt tuning is a modular and efficient solution for training large language models (LLMs). One of its main advantages is task modularity, making it suitable for multi-task problems. However, current soft-prompt-based methods often sacrifice multi-task modularity, requiring the training process to be fully or partially repeated for each newly added task. While recent work on task vectors applied arithmetic operations on full model weights to achieve the desired multi-task performance, a similar approach for soft-prompts is still missing. To this end, we introduce Task Prompt Vectors, created by element-wise difference between weights of tuned soft-prompts and their random initialization. Experimental results on 12 NLU datasets show that task prompt vectors can be used in low-resource settings to effectively initialize prompt tuning on similar tasks. In addition, we show that task prompt vectors are independent of the random initialization of prompt tuning. This allows prompt arithmetics with the pre-trained vectors from different tasks. In this way, by arithmetic addition of task prompt vectors from multiple tasks, we are able to outperform a state-of-the-art baseline in some cases.


Soft Begging: Modular and Efficient Shielding of LLMs against Prompt Injection and Jailbreaking based on Prompt Tuning

arXiv.org Artificial Intelligence

Prompt injection (both direct and indirect) and jailbreaking are now recognized as significant issues for large language models (LLMs), particularly due to their potential for harm in application-integrated contexts. This extended abstract explores a novel approach to protecting LLMs from such attacks, termed "soft begging." This method involves training soft prompts to counteract the effects of corrupted prompts on the LLM's output. We provide an overview of prompt injections and jailbreaking, introduce the theoretical basis of the "soft begging" technique, and discuss an evaluation of its effectiveness.


Generative Large Language Models in Automated Fact-Checking: A Survey

arXiv.org Artificial Intelligence

The dissemination of false information across online platforms poses a serious societal challenge, necessitating robust measures for information verification. While manual fact-checking efforts are still instrumental, the growing volume of false information requires automated methods. Large language models (LLMs) offer promising opportunities to assist fact-checkers, leveraging LLM's extensive knowledge and robust reasoning capabilities. In this survey paper, we investigate the utilization of generative LLMs in the realm of fact-checking, illustrating various approaches that have been employed and techniques for prompting or fine-tuning LLMs. By providing an overview of existing approaches, this survey aims to improve the understanding of utilizing LLMs in fact-checking and to facilitate further progress in LLMs' involvement in this process.