Goto

Collaborating Authors

 Nisioti, Eleni


Collective Innovation in Groups of Large Language Models

arXiv.org Artificial Intelligence

Human culture relies on collective innovation: our ability to continuously explore how existing elements in our environment can be combined to create new ones. Language is hypothesized to play a key role in human culture, driving individual cognitive capacities and shaping communication. Yet the majority of models of collective innovation assign no cognitive capacities or language abilities to agents. Here, we contribute a computational study of collective innovation where agents are Large Language Models (LLMs) that play Little Alchemy 2, a creative video game originally developed for humans that, as we argue, captures useful aspects of innovation landscapes not present in previous test-beds. We, first, study an LLM in isolation and discover that it exhibits both useful skills and crucial limitations. We, then, study groups of LLMs that share information related to their behaviour and focus on the effect of social connectivity on collective performance. In agreement with previous human and computational studies, we observe that groups with dynamic connectivity out-compete fully-connected groups. Our work reveals opportunities and challenges for future studies of collective innovation that are becoming increasingly relevant as Generative Artificial Intelligence algorithms and humans innovate alongside each other.


From Text to Life: On the Reciprocal Relationship between Artificial Life and Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have taken the field of AI by storm, but their adoption in the field of Artificial Life (ALife) has been, so far, relatively reserved. In this work we investigate the potential synergies between LLMs and ALife, drawing on a large body of research in the two fields. We explore the potential of LLMs as tools for ALife research, for example, as operators for evolutionary computation or the generation of open-ended environments. Reciprocally, principles of ALife, such as self-organization, collective intelligence and evolvability can provide an opportunity for shaping the development and functionalities of LLMs, leading to more adaptive and responsive models. By investigating this dynamic interplay, the paper aims to inspire innovative crossover approaches for both ALife and LLM research. Along the way, we examine the extent to which LLMs appear to increasingly exhibit properties such as emergence or collective intelligence, expanding beyond their original goal of generating text, and potentially redefining our perception of lifelike intelligence in artificial systems.


Structurally Flexible Neural Networks: Evolving the Building Blocks for General Agents

arXiv.org Artificial Intelligence

Artificial neural networks used for reinforcement learning are structurally rigid, meaning that each optimized parameter of the network is tied to its specific placement in the network structure. It also means that a network only works with pre-defined and fixed input- and output sizes. This is a consequence of having the number of optimized parameters being directly dependent on the structure of the network. Structural rigidity limits the ability to optimize parameters of policies across multiple environments that do not share input and output spaces. Here, we evolve a set of neurons and plastic synapses each represented by a gated recurrent unit (GRU). During optimization, the parameters of these fundamental units of a neural network are optimized in different random structural configurations. Earlier work has shown that parameter sharing between units is important for making structurally flexible neurons We show that it is possible to optimize a set of distinct neuron- and synapse types allowing for a mitigation of the symmetry dilemma. We demonstrate this by optimizing a single set of neurons and synapses to solve multiple reinforcement learning control tasks simultaneously.


Growing Artificial Neural Networks for Control: the Role of Neuronal Diversity

arXiv.org Artificial Intelligence

In biological evolution complex neural structures grow from a handful of cellular ingredients. As genomes in nature are bounded in size, this complexity is achieved by a growth process where cells communicate locally to decide whether to differentiate, proliferate and connect with other cells. This self-organisation is hypothesized to play an important part in the generalisation, and robustness of biological neural networks. Artificial neural networks (ANNs), on the other hand, are traditionally optimized in the space of weights. Thus, the benefits and challenges of growing artificial neural networks remain understudied. Building on the previously introduced Neural Developmental Programs (NDP), in this work we present an algorithm for growing ANNs that solve reinforcement learning tasks. We identify a key challenge: ensuring phenotypic complexity requires maintaining neuronal diversity, but this diversity comes at the cost of optimization stability. To address this, we introduce two mechanisms: (a) equipping neurons with an intrinsic state inherited upon neurogenesis; (b) lateral inhibition, a mechanism inspired by biological growth, which controlls the pace of growth, helping diversity persist. We show that both mechanisms contribute to neuronal diversity and that, equipped with them, NDPs achieve comparable results to existing direct and developmental encodings in complex locomotion tasks


Evolving Reservoirs for Meta Reinforcement Learning

arXiv.org Artificial Intelligence

Animals often demonstrate a remarkable ability to adapt to their environments during their lifetime. They do so partly due to the evolution of morphological and neural structures. These structures capture features of environments shared between generations to bias and speed up lifetime learning. In this work, we propose a computational model for studying a mechanism that can enable such a process. We adopt a computational framework based on meta reinforcement learning as a model of the interplay between evolution and development. At the evolutionary scale, we evolve reservoirs, a family of recurrent neural networks that differ from conventional networks in that one optimizes not the synaptic weights, but hyperparameters controlling macro-level properties of the resulting network architecture. At the developmental scale, we employ these evolved reservoirs to facilitate the learning of a behavioral policy through Reinforcement Learning (RL). Within an RL agent, a reservoir encodes the environment state before providing it to an action policy. We evaluate our approach on several 2D and 3D simulated environments. Our results show that the evolution of reservoirs can improve the learning of diverse challenging tasks. We study in particular three hypotheses: the use of an architecture combining reservoirs and reinforcement learning could enable (1) solving tasks with partial observability, (2) generating oscillatory dynamics that facilitate the learning of locomotion tasks, and (3) facilitating the generalization of learned behaviors to new tasks unknown during the evolution phase.


Emergence of Collective Open-Ended Exploration from Decentralized Meta-Reinforcement Learning

arXiv.org Artificial Intelligence

Recent works have proven that intricate cooperative behaviors can emerge in agents trained using meta reinforcement learning on open ended task distributions using self-play. While the results are impressive, we argue that self-play and other centralized training techniques do not accurately reflect how general collective exploration strategies emerge in the natural world: through decentralized training and over an open-ended distribution of tasks. In this work we therefore investigate the emergence of collective exploration strategies, where several agents meta-learn independent recurrent policies on an open ended distribution of tasks. To this end we introduce a novel environment with an open ended procedurally generated task space which dynamically combines multiple subtasks sampled from five diverse task types to form a vast distribution of task trees. We show that decentralized agents trained in our environment exhibit strong generalization abilities when confronted with novel objects at test time. Additionally, despite never being forced to cooperate during training the agents learn collective exploration strategies which allow them to solve novel tasks never encountered during training. We further find that the agents learned collective exploration strategies extend to an open ended task setting, allowing them to solve task trees of twice the depth compared to the ones seen during training. Our open source code as well as videos of the agents can be found on our companion website.


Autotelic Reinforcement Learning in Multi-Agent Environments

arXiv.org Artificial Intelligence

In the intrinsically motivated skills acquisition problem, the agent is set in an environment without any pre-defined goals and needs to acquire an open-ended repertoire of skills. To do so the agent needs to be autotelic (deriving from the Greek auto (self) and telos (end goal)): it needs to generate goals and learn to achieve them following its own intrinsic motivation rather than external supervision. Autotelic agents have so far been considered in isolation. But many applications of open-ended learning entail groups of agents. Multi-agent environments pose an additional challenge for autotelic agents: to discover and master goals that require cooperation agents must pursue them simultaneously, but they have low chances of doing so if they sample them independently. In this work, we propose a new learning paradigm for modeling such settings, the Decentralized Intrinsically Motivated Skills Acquisition Problem (Dec-IMSAP), and employ it to solve cooperative navigation tasks. First, we show that agents setting their goals independently fail to master the full diversity of goals. Then, we show that a sufficient condition for achieving this is to ensure that a group aligns its goals, i.e., the agents pursue the same cooperative goal. Our empirical analysis shows that alignment enables specialization, an efficient strategy for cooperation. Finally, we introduce the Goal-coordination game, a fully-decentralized emergent communication algorithm, where goal alignment emerges from the maximization of individual rewards in multi-goal cooperative environments and show that it is able to reach equal performance to a centralized training baseline that guarantees aligned goals. To our knowledge, this is the first contribution addressing the problem of intrinsically motivated multi-agent goal exploration in a decentralized training paradigm.


Social Network Structure Shapes Innovation: Experience-sharing in RL with SAPIENS

arXiv.org Artificial Intelligence

Human culture relies on innovation: our ability to continuously explore how existing elements can be combined to create new ones. Innovation is not solitary, it relies on collective search and accumulation. Reinforcement learning (RL) approaches commonly assume that fully-connected groups are best suited for innovation. However, human laboratory and field studies have shown that hierarchical innovation is more robustly achieved by dynamic social network structures. In dynamic settings, humans oscillate between innovating individually or in small clusters, and then sharing outcomes with others. To our knowledge, the role of social network structure on innovation has not been systematically studied in RL. Here, we use a multi-level problem setting (WordCraft), with three different innovation tasks to test the hypothesis that the social network structure affects the performance of distributed RL algorithms. We systematically design networks of DQNs sharing experiences from their replay buffers in varying structures (fully-connected, small world, dynamic, ring) and introduce a set of behavioral and mnemonic metrics that extend the classical reward-focused evaluation framework of RL. Comparing the level of innovation achieved by different social network structures across different tasks shows that, first, consistent with human findings, experience sharing within a dynamic structure achieves the highest level of innovation in tasks with a deceptive nature and large search spaces. Second, experience sharing is not as helpful when there is a single clear path to innovation. Third, the metrics we propose, can help understand the success of different social network structures on different tasks, with the diversity of experiences on an individual and group level lending crucial insights.


Learning to Improve Representations by Communicating About Perspectives

arXiv.org Artificial Intelligence

Effective latent representations need to capture abstract features of the external world. We hypothesise that the necessity for a group of agents to reconcile their subjective interpretations of a shared environment state is an essential factor influencing this property. To test this hypothesis, we propose an architecture where individual agents in a population receive different observations of the same underlying state and learn latent representations that they communicate to each other. We highlight a fundamental link between emergent communication and representation learning: the role of language as a cognitive tool and the opportunities conferred by subjectivity, an inherent property of most multi-agent systems. We present a minimal architecture comprised of a population of autoencoders, where we define loss functions, capturing different aspects of effective communication, and examine their effect on the learned representations. We show that our proposed architecture allows the emergence of aligned representations. The subjectivity introduced by presenting agents with distinct perspectives of the environment state contributes to learning abstract representations that outperform those learned by both a single autoencoder and a population of autoencoders, presented with identical perspectives. Altogether, our results demonstrate how communication from subjective perspectives can lead to the acquisition of more abstract representations in multi-agent systems, opening promising perspectives for future research at the intersection of representation learning and emergent communication.


Grounding Artificial Intelligence in the Origins of Human Behavior

arXiv.org Artificial Intelligence

Recent advances in Artificial Intelligence (AI) have revived the quest for agents able to acquire an open-ended repertoire of skills. However, although this ability is fundamentally related to the characteristics of human intelligence, research in this field rarely considers the processes that may have guided the emergence of complex cognitive capacities during the evolution of the species. Research in Human Behavioral Ecology (HBE) seeks to understand how the behaviors characterizing human nature can be conceived as adaptive responses to major changes in the structure of our ecological niche. In this paper, we propose a framework highlighting the role of environmental complexity in open-ended skill acquisition, grounded in major hypotheses from HBE and recent contributions in Reinforcement learning (RL). We use this framework to highlight fundamental links between the two disciplines, as well as to identify feedback loops that bootstrap ecological complexity and create promising research directions for AI researchers.