Goto

Collaborating Authors

 Nejat, Goldie


Mobile Robot Navigation Using Hand-Drawn Maps: A Vision Language Model Approach

arXiv.org Artificial Intelligence

Hand-drawn maps can be used to convey navigation instructions between humans and robots in a natural and efficient manner. However, these maps can often contain inaccuracies such as scale distortions and missing landmarks which present challenges for mobile robot navigation. This paper introduces a novel Hand-drawn Map Navigation (HAM-Nav) architecture that leverages pre-trained vision language models (VLMs) for robot navigation across diverse environments, hand-drawing styles, and robot embodiments, even in the presence of map inaccuracies. HAM-Nav integrates a unique Selective Visual Association Prompting approach for topological map-based position estimation and navigation planning as well as a Predictive Navigation Plan Parser to infer missing landmarks. Extensive experiments were conducted in photorealistic simulated environments, using both wheeled and legged robots, demonstrating the effectiveness of HAM-Nav in terms of navigation success rates and Success weighted by Path Length. Furthermore, a user study in real-world environments highlighted the practical utility of hand-drawn maps for robot navigation as well as successful navigation outcomes.


MLLM-Search: A Zero-Shot Approach to Finding People using Multimodal Large Language Models

arXiv.org Artificial Intelligence

Robotic search of people in human-centered environments, including healthcare settings, is challenging as autonomous robots need to locate people without complete or any prior knowledge of their schedules, plans or locations. Furthermore, robots need to be able to adapt to real-time events that can influence a person's plan in an environment. In this paper, we present MLLM-Search, a novel zero-shot person search architecture that leverages multimodal large language models (MLLM) to address the mobile robot problem of searching for a person under event-driven scenarios with varying user schedules. Our approach introduces a novel visual prompting method to provide robots with spatial understanding of the environment by generating a spatially grounded waypoint map, representing navigable waypoints by a topological graph and regions by semantic labels. This is incorporated into a MLLM with a region planner that selects the next search region based on the semantic relevance to the search scenario, and a waypoint planner which generates a search path by considering the semantically relevant objects and the local spatial context through our unique spatial chain-of-thought prompting approach. Extensive 3D photorealistic experiments were conducted to validate the performance of MLLM-Search in searching for a person with a changing schedule in different environments. An ablation study was also conducted to validate the main design choices of MLLM-Search. Furthermore, a comparison study with state-of-the art search methods demonstrated that MLLM-Search outperforms existing methods with respect to search efficiency. Real-world experiments with a mobile robot in a multi-room floor of a building showed that MLLM-Search was able to generalize to finding a person in a new unseen environment.


The Future of Intelligent Healthcare: A Systematic Analysis and Discussion on the Integration and Impact of Robots Using Large Language Models for Healthcare

arXiv.org Artificial Intelligence

The potential use of large language models (LLMs) in healthcare robotics can help address the significant demand put on healthcare systems around the world with respect to an aging demographic and a shortage of healthcare professionals. Even though LLMs have already been integrated into medicine to assist both clinicians and patients, the integration of LLMs within healthcare robots has not yet been explored for clinical settings. In this perspective paper, we investigate the groundbreaking developments in robotics and LLMs to uniquely identify the needed system requirements for designing health specific LLM based robots in terms of multi modal communication through human robot interactions (HRIs), semantic reasoning, and task planning. Furthermore, we discuss the ethical issues, open challenges, and potential future research directions for this emerging innovative field.


OLiVia-Nav: An Online Lifelong Vision Language Approach for Mobile Robot Social Navigation

arXiv.org Artificial Intelligence

Service robots in human-centered environments such as hospitals, office buildings, and long-term care homes need to navigate while adhering to social norms to ensure the safety and comfortability of the people they are sharing the space with. Furthermore, they need to adapt to new social scenarios that can arise during robot navigation. In this paper, we present a novel Online Lifelong Vision Language architecture, OLiVia-Nav, which uniquely integrates vision-language models (VLMs) with an online lifelong learning framework for robot social navigation. We introduce a unique distillation approach, Social Context Contrastive Language Image Pre-training (SC-CLIP), to transfer the social reasoning capabilities of large VLMs to a lightweight VLM, in order for OLiVia-Nav to directly encode social and environment context during robot navigation. These encoded embeddings are used to generate and select robot social compliant trajectories. The lifelong learning capabilities of SC-CLIP enable OLiVia-Nav to update the lightweight VLM with robot trajectory predictions overtime as new social scenarios are encountered. We conducted extensive real-world experiments in diverse social navigation scenarios. The results showed that OLiVia-Nav outperformed existing state-of-the-art DRL and VLM methods in terms of mean squared error, Hausdorff loss, and personal space violation duration. Ablation studies also verified the design choices for OLiVia-Nav.


4CNet: A Confidence-Aware, Contrastive, Conditional, Consistency Model for Robot Map Prediction in Multi-Robot Environments

arXiv.org Artificial Intelligence

Mobile robots in unknown cluttered environments with irregularly shaped obstacles often face sensing, energy, and communication challenges which directly affect their ability to explore these environments. In this paper, we introduce a novel deep learning method, Confidence-Aware Contrastive Conditional Consistency Model (4CNet), for mobile robot map prediction during resource-limited exploration in multi-robot environments. 4CNet uniquely incorporates: 1) a conditional consistency model for map prediction in irregularly shaped unknown regions, 2) a contrastive map-trajectory pretraining framework for a trajectory encoder that extracts spatial information from the trajectories of nearby robots during map prediction, and 3) a confidence network to measure the uncertainty of map prediction for effective exploration under resource constraints. We incorporate 4CNet within our proposed robot exploration with map prediction architecture, 4CNet-E. We then conduct extensive comparison studies with 4CNet-E and state-of-the-art heuristic and learning methods to investigate both map prediction and exploration performance in environments consisting of uneven terrain and irregularly shaped obstacles. Results showed that 4CNet-E obtained statistically significant higher prediction accuracy and area coverage with varying environment sizes, number of robots, energy budgets, and communication limitations. Real-world mobile robot experiments were performed and validated the feasibility and generalizability of 4CNet-E for mobile robot map prediction and exploration.


LDTrack: Dynamic People Tracking by Service Robots using Diffusion Models

arXiv.org Artificial Intelligence

Tracking of dynamic people in cluttered and crowded human-centered environments is a challenging robotics problem due to the presence of intraclass variations including occlusions, pose deformations, and lighting variations. This paper introduces a novel deep learning architecture, using conditional latent diffusion models, the Latent Diffusion Track (LDTrack), for tracking multiple dynamic people under intraclass variations. By uniquely utilizing conditional latent diffusion models to capture temporal person embeddings, our architecture can adapt to appearance changes of people over time. We incorporated a latent feature encoder network which enables the diffusion process to operate within a high-dimensional latent space to allow for the extraction and spatial-temporal refinement of such rich features as person appearance, motion, location, identity, and contextual information. Extensive experiments demonstrate the effectiveness of LDTrack over other state-of-the-art tracking methods in cluttered and crowded human-centered environments under intraclass variations. Namely, the results show our method outperforms existing deep learning robotic people tracking methods in both tracking accuracy and tracking precision with statistical significance.


Deep Reinforcement Learning for Decentralized Multi-Robot Exploration With Macro Actions

arXiv.org Artificial Intelligence

Cooperative multi-robot teams need to be able to explore cluttered and unstructured environments while dealing with communication dropouts that prevent them from exchanging local information to maintain team coordination. Therefore, robots need to consider high-level teammate intentions during action selection. In this letter, we present the first Macro Action Decentralized Exploration Network (MADE-Net) using multi-agent deep reinforcement learning (DRL) to address the challenges of communication dropouts during multi-robot exploration in unseen, unstructured, and cluttered environments. Simulated robot team exploration experiments were conducted and compared against classical and DRL methods where MADE-Net outperformed all benchmark methods in terms of computation time, total travel distance, number of local interactions between robots, and exploration rate across various degrees of communication dropouts. A scalability study in 3D environments showed a decrease in exploration time with MADE-Net with increasing team and environment sizes. The experiments presented highlight the effectiveness and robustness of our method.


Robots Autonomously Detecting People: A Multimodal Deep Contrastive Learning Method Robust to Intraclass Variations

arXiv.org Artificial Intelligence

Robotic detection of people in crowded and/or cluttered human-centered environments including hospitals, long-term care, stores and airports is challenging as people can become occluded by other people or objects, and deform due to variations in clothing or pose. There can also be loss of discriminative visual features due to poor lighting. In this paper, we present a novel multimodal person detection architecture to address the mobile robot problem of person detection under intraclass variations. We present a two-stage training approach using 1) a unique pretraining method we define as Temporal Invariant Multimodal Contrastive Learning (TimCLR), and 2) a Multimodal Faster R-CNN (MFRCNN) detector. TimCLR learns person representations that are invariant under intraclass variations through unsupervised learning. Our approach is unique in that it generates image pairs from natural variations within multimodal image sequences, in addition to synthetic data augmentation, and contrasts crossmodal features to transfer invariances between different modalities. These pretrained features are used by the MFRCNN detector for finetuning and person detection from RGB-D images. Extensive experiments validate the performance of our DL architecture in both human-centered crowded and cluttered environments. Results show that our method outperforms existing unimodal and multimodal person detection approaches in terms of detection accuracy in detecting people with body occlusions and pose deformations in different lighting conditions.


NavFormer: A Transformer Architecture for Robot Target-Driven Navigation in Unknown and Dynamic Environments

arXiv.org Artificial Intelligence

In unknown cluttered and dynamic environments such as disaster scenes, mobile robots need to perform target-driven navigation in order to find people or objects of interest, while being solely guided by images of the targets. In this paper, we introduce NavFormer, a novel end-to-end transformer architecture developed for robot target-driven navigation in unknown and dynamic environments. NavFormer leverages the strengths of both 1) transformers for sequential data processing and 2) self-supervised learning (SSL) for visual representation to reason about spatial layouts and to perform collision-avoidance in dynamic settings. The architecture uniquely combines dual-visual encoders consisting of a static encoder for extracting invariant environment features for spatial reasoning, and a general encoder for dynamic obstacle avoidance. The primary robot navigation task is decomposed into two sub-tasks for training: single robot exploration and multi-robot collision avoidance. We perform cross-task training to enable the transfer of learned skills to the complex primary navigation task without the need for task-specific fine-tuning. Simulated experiments demonstrate that NavFormer can effectively navigate a mobile robot in diverse unknown environments, outperforming existing state-of-the-art methods in terms of success rate and success weighted by (normalized inverse) path length. Furthermore, a comprehensive ablation study is performed to evaluate the impact of the main design choices of the structure and training of NavFormer, further validating their effectiveness in the overall system.


The Implementation of a Planning and Scheduling Architecture for Multiple Robots Assisting Multiple Users in a Retirement Home Setting

AAAI Conferences

Our research focuses on the use of Planning & Scheduling (P&S) technology for a team of robots providing daily assistance to multiple elder adults living in retirement facilities. Multi-user assistance and group-based activities require robots to plan and schedule their human-robot interaction (HRI) activities based on the specific needs, time constraints, availability and preferences of the multiple users. In this paper, we introduce and implement a novel centralized system architecture that can manage real P&S scenarios with multiple socially assistive robots, multiple users and their individual schedules, and single- and multi-person assistive activities. We describe how the main components of the proposed P&S architecture are integrated to control the robots, and to generate and monitor sequences of temporally annotated activities using off-the-shelf temporal planners. We verify that the architecture can manage realistic scenarios with three assistive robots, twenty users, and several single- and group-based activity requests during a single day.