Goto

Collaborating Authors

 Navratil, Jiri


Distributional Preference Alignment of LLMs via Optimal Transport

arXiv.org Machine Learning

Current LLM alignment techniques use pairwise human preferences at a sample level, and as such, they do not imply an alignment on the distributional level. We propose in this paper Alignment via Optimal Transport (AOT), a novel method for distributional preference alignment of LLMs. AOT aligns LLMs on unpaired preference data by making the reward distribution of the positive samples stochastically dominant in the first order on the distribution of negative samples. We introduce a convex relaxation of this first-order stochastic dominance and cast it as an optimal transport problem with a smooth and convex cost. Thanks to the one-dimensional nature of the resulting optimal transport problem and the convexity of the cost, it has a closed-form solution via sorting on empirical measures. We fine-tune LLMs with this AOT objective, which enables alignment by penalizing the violation of the stochastic dominance of the reward distribution of the positive samples on the reward distribution of the negative samples. We analyze the sample complexity of AOT by considering the dual of the OT problem and show that it converges at the parametric rate. Empirically, we show on a diverse set of alignment datasets and LLMs that AOT leads to state-of-the-art models in the 7B family of models when evaluated with Open LLM Benchmarks and AlpacaEval.


Auditing and Generating Synthetic Data with Controllable Trust Trade-offs

arXiv.org Machine Learning

Real-world data often exhibits bias, imbalance, and privacy risks. Synthetic datasets have emerged to address these issues. This paradigm relies on generative AI models to generate unbiased, privacy-preserving data while maintaining fidelity to the original data. However, assessing the trustworthiness of synthetic datasets and models is a critical challenge. We introduce a holistic auditing framework that comprehensively evaluates synthetic datasets and AI models. It focuses on preventing bias and discrimination, ensures fidelity to the source data, assesses utility, robustness, and privacy preservation. We demonstrate the framework's effectiveness by auditing various generative models across diverse use cases like education, healthcare, banking, and human resources, spanning different data modalities such as tabular, time-series, vision, and natural language. This holistic assessment is essential for compliance with regulatory safeguards. We introduce a trustworthiness index to rank synthetic datasets based on their safeguards trade-offs. Furthermore, we present a trustworthiness-driven model selection and cross-validation process during training, exemplified with "TrustFormers" across various data types. This approach allows for controllable trustworthiness trade-offs in synthetic data creation. Our auditing framework fosters collaboration among stakeholders, including data scientists, governance experts, internal reviewers, external certifiers, and regulators. This transparent reporting should become a standard practice to prevent bias, discrimination, and privacy violations, ensuring compliance with policies and providing accountability, safety, and performance guarantees.


Risk Assessment and Statistical Significance in the Age of Foundation Models

arXiv.org Machine Learning

Foundation models such as large language models (LLMs) have shown remarkable capabilities redefining the field of artificial intelligence. At the same time, they present pressing and challenging socio-technical risks regarding the trustworthiness of their outputs and their alignment with human values and ethics [Bommasani et al., 2021]. Evaluating LLMs is therefore a multi-dimensional problem, where those risks are assessed across diverse tasks and domains [Chang et al., 2023]. In order to quantify these risks, Liang et al. [2022], Wang et al. [2023], Huang et al. [2023] proposed benchmarks of automatic metrics for probing the trustworthiness of LLMs. These metrics include accuracy, robustness, fairness, toxicity of the outputs, etc. Human evaluation benchmarks can be even more nuanced, and are often employed when tasks surpass the scope of standard metrics. Notable benchmarks based on human and automatic evaluations include, among others, Chatbot Arena [Zheng et al., 2023], HELM [Bommasani et al., 2023], MosaicML's Eval, Open LLM Leaderboard [Wolf, 2023], and BIG-bench [Srivastava et al., 2022], each catering to specific evaluation areas such as chatbot performance, knowledge assessment, and domain-specific challenges. Traditional metrics, however, sometimes do not correlate well with human judgments.


Uncertainty Quantification 360: A Holistic Toolkit for Quantifying and Communicating the Uncertainty of AI

arXiv.org Artificial Intelligence

In this paper, we describe an open source Python toolkit named Uncertainty Quantification 360 (UQ360) for the uncertainty quantification of AI models. The goal of this toolkit is twofold: first, to provide a broad range of capabilities to streamline as well as foster the common practices of quantifying, evaluating, improving, and communicating uncertainty in the AI application development lifecycle; second, to encourage further exploration of UQ's connections to other pillars of trustworthy AI such as fairness and transparency through the dissemination of latest research and education materials. Beyond the Python package (\url{https://github.com/IBM/UQ360}), we have developed an interactive experience (\url{http://uq360.mybluemix.net}) and guidance materials as educational tools to aid researchers and developers in producing and communicating high-quality uncertainties in an effective manner.


Uncertainty Characteristics Curves: A Systematic Assessment of Prediction Intervals

arXiv.org Machine Learning

Accurate quantification of model uncertainty has long been recognized as a fundamental requirement for trusted AI. In regression tasks, uncertainty is typically quantified using prediction intervals calibrated to a specific operating point, making evaluation and comparison across different studies difficult. Our work leverages: (1) the concept of operating characteristics curves and (2) the notion of a gain over a simple reference, to derive a novel operating point agnostic assessment methodology for prediction intervals. The paper describes the corresponding algorithm, provides a theoretical analysis, and demonstrates its utility in multiple scenarios. We argue that the proposed method addresses the current need for comprehensive assessment of prediction intervals and thus represents a valuable addition to the uncertainty quantification toolbox.


Not Your Grandfathers Test Set: Reducing Labeling Effort for Testing

arXiv.org Machine Learning

Building and maintaining high-quality test sets remains a laborious and expensive task. As a result, test sets in the real world are often not properly kept up to date and drift from the production traffic they are supposed to represent. The frequency and severity of this drift raises serious concerns over the value of manually labeled test sets in the QA process. This paper proposes a simple but effective technique that drastically reduces the effort needed to construct and maintain a high-quality test set (reducing labeling effort by 80-100% across a range of practical scenarios). This result encourages a fundamental rethinking of the testing process by both practitioners, who can use these techniques immediately to improve their testing, and researchers who can help address many of the open questions raised by this new approach.


Uncertainty Prediction for Deep Sequential Regression Using Meta Models

arXiv.org Machine Learning

Generating high quality uncertainty estimates for sequential regression, particularly deep recurrent networks, remains a challenging and open problem. Existing approaches often make restrictive assumptions (such as stationarity) yet still perform poorly in practice, particularly in presence of real world non-stationary signals and drift. This paper describes a flexible method that can generate symmetric and asymmetric uncertainty estimates, makes no assumptions about stationarity, and outperforms competitive baselines on both drift and non drift scenarios. This work helps make sequential regression more effective and practical for use in real-world applications, and is a powerful new addition to the modeling toolbox for sequential uncertainty quantification in general.


Accelerating Physics-Based Simulations Using Neural Network Proxies: An Application in Oil Reservoir Modeling

arXiv.org Machine Learning

We develop a proxy model based on deep learning methods to accelerate the simulations of oil reservoirs--by three orders of magnitude--compared to industry-strength physics-based PDE solvers. This paper describes a new architectural approach to this task, accompanied by a thorough experimental evaluation on a publicly available reservoir model. We demonstrate that in a practical setting a speedup of more than 2000X can be achieved with an average sequence error of about 10\% relative to the oil-field simulator. The proxy model is contrasted with a high-quality physics-based acceleration baseline and is shown to outperform it by several orders of magnitude. We believe the outcomes presented here are extremely promising and offer a valuable benchmark for continuing research in oil field development optimization. Due to its domain-agnostic architecture, the presented approach can be extended to many applications beyond the field of oil and gas exploration.