Goto

Collaborating Authors

 Naik, Aakanksha


Exploring Long-Term Prediction of Type 2 Diabetes Microvascular Complications

arXiv.org Artificial Intelligence

Electronic healthcare records (EHR) contain a huge wealth of data that can support the prediction of clinical outcomes. EHR data is often stored and analysed using clinical codes (ICD10, SNOMED), however these can differ across registries and healthcare providers. Integrating data across systems involves mapping between different clinical ontologies requiring domain expertise, and at times resulting in data loss. To overcome this, code-agnostic models have been proposed. We assess the effectiveness of a code-agnostic representation approach on the task of long-term microvascular complication prediction for individuals living with Type 2 Diabetes. Our method encodes individual EHRs as text using fine-tuned, pretrained clinical language models. Leveraging large-scale EHR data from the UK, we employ a multi-label approach to simultaneously predict the risk of microvascular complications across 1-, 5-, and 10-year windows. We demonstrate that a code-agnostic approach outperforms a code-based model and illustrate that performance is better with longer prediction windows but is biased to the first occurring complication. Overall, we highlight that context length is vitally important for model performance. This study highlights the possibility of including data from across different clinical ontologies and is a starting point for generalisable clinical models.


ArxivDIGESTables: Synthesizing Scientific Literature into Tables using Language Models

arXiv.org Artificial Intelligence

When conducting literature reviews, scientists often create literature review tables - tables whose rows are publications and whose columns constitute a schema, a set of aspects used to compare and contrast the papers. Can we automatically generate these tables using language models (LMs)? In this work, we introduce a framework that leverages LMs to perform this task by decomposing it into separate schema and value generation steps. To enable experimentation, we address two main challenges: First, we overcome a lack of high-quality datasets to benchmark table generation by curating and releasing arxivDIGESTables, a new dataset of 2,228 literature review tables extracted from ArXiv papers that synthesize a total of 7,542 research papers. Second, to support scalable evaluation of model generations against human-authored reference tables, we develop DecontextEval, an automatic evaluation method that aligns elements of tables with the same underlying aspects despite differing surface forms. Given these tools, we evaluate LMs' abilities to reconstruct reference tables, finding this task benefits from additional context to ground the generation (e.g. table captions, in-text references). Finally, through a human evaluation study we find that even when LMs fail to fully reconstruct a reference table, their generated novel aspects can still be useful.


SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature

arXiv.org Artificial Intelligence

We present SciRIFF (Scientific Resource for Instruction-Following and Finetuning), a dataset of 137K instruction-following demonstrations for 54 tasks covering five essential scientific literature understanding capabilities: information extraction, summarization, question answering, claim verification, and classification. SciRIFF demonstrations are notable for their long input contexts, detailed task specifications, and complex structured outputs. While instruction-following resources are available in specific domains such as clinical medicine and chemistry, SciRIFF is the first dataset focused on extracting and synthesizing information from research literature across a wide range of scientific fields. To demonstrate the utility of SciRIFF, we develop a sample-efficient strategy to adapt a general instruction-following model for science by performing additional finetuning on a mix of general-domain and SciRIFF demonstrations. In evaluations on nine held-out scientific tasks, our model -- called SciTulu -- improves over a strong LLM baseline by 28.1% and 6.5% at the 7B and 70B scales respectively, while maintaining general instruction-following performance within 2% of the baseline. We are optimistic that SciRIFF will facilitate the development and evaluation of LLMs to help researchers navigate the ever-growing body of scientific literature. We release our dataset, model checkpoints, and data processing and evaluation code to enable further research.


On-the-fly Definition Augmentation of LLMs for Biomedical NER

arXiv.org Artificial Intelligence

Despite their general capabilities, LLMs still struggle on biomedical NER tasks, which are difficult due to the presence of specialized terminology and lack of training data. In this work we set out to improve LLM performance on biomedical NER in limited data settings via a new knowledge augmentation approach which incorporates definitions of relevant concepts on-the-fly. During this process, to provide a test bed for knowledge augmentation, we perform a comprehensive exploration of prompting strategies. Our experiments show that definition augmentation is useful for both open source and closed LLMs. For example, it leads to a relative improvement of 15\% (on average) in GPT-4 performance (F1) across all (six) of our test datasets. We conduct extensive ablations and analyses to demonstrate that our performance improvements stem from adding relevant definitional knowledge. We find that careful prompting strategies also improve LLM performance, allowing them to outperform fine-tuned language models in few-shot settings. To facilitate future research in this direction, we release our code at https://github.com/allenai/beacon.


OLMo: Accelerating the Science of Language Models

arXiv.org Artificial Intelligence

Language models (LMs) have become ubiquitous in both NLP research and in commercial product offerings. As their commercial importance has surged, the most powerful models have become closed off, gated behind proprietary interfaces, with important details of their training data, architectures, and development undisclosed. Given the importance of these details in scientifically studying these models, including their biases and potential risks, we believe it is essential for the research community to have access to powerful, truly open LMs. To this end, this technical report details the first release of OLMo, a state-of-the-art, truly Open Language Model and its framework to build and study the science of language modeling. Unlike most prior efforts that have only released model weights and inference code, we release OLMo and the whole framework, including training data and training and evaluation code. We hope this release will empower and strengthen the open research community and inspire a new wave of innovation.


Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research

arXiv.org Artificial Intelligence

Language models have become a critical technology to tackling a wide range of natural language processing tasks, yet many details about how the best-performing language models were developed are not reported. In particular, information about their pretraining corpora is seldom discussed: commercial language models rarely provide any information about their data; even open models rarely release datasets they are trained on, or an exact recipe to reproduce them. As a result, it is challenging to conduct certain threads of language modeling research, such as understanding how training data impacts model capabilities and shapes their limitations. To facilitate open research on language model pretraining, we release Dolma, a three trillion tokens English corpus, built from a diverse mixture of web content, scientific papers, code, public-domain books, social media, and encyclopedic materials. In addition, we open source our data curation toolkit to enable further experimentation and reproduction of our work. In this report, we document Dolma, including its design principles, details about its construction, and a summary of its contents. We interleave this report with analyses and experimental results from training language models on intermediate states of Dolma to share what we have learned about important data curation practices, including the role of content or quality filters, deduplication, and multi-source mixing. Dolma has been used to train OLMo, a state-of-the-art, open language model and framework designed to build and study the science of language modeling.


NLP for Maternal Healthcare: Perspectives and Guiding Principles in the Age of LLMs

arXiv.org Artificial Intelligence

Ethical frameworks for the use of natural language processing (NLP) are urgently needed to shape how large language models (LLMs) and similar tools are used for healthcare applications. Healthcare faces existing challenges including the balance of power in clinician-patient relationships, systemic health disparities, historical injustices, and economic constraints. Drawing directly from the voices of those most affected, and focusing on a case study of a specific healthcare setting, we propose a set of guiding principles for the use of NLP in maternal healthcare. We led an interactive session centered on an LLM-based chatbot demonstration during a full-day workshop with 39 participants, and additionally surveyed 30 healthcare workers and 30 birthing people about their values, needs, and perceptions of NLP tools in the context of maternal health. We conducted quantitative and qualitative analyses of the survey results and interactive discussions to consolidate our findings into a set of guiding principles. We propose nine principles for ethical use of NLP for maternal healthcare, grouped into three themes: (i) recognizing contextual significance (ii) holistic measurements, and (iii) who/what is valued. For each principle, we describe its underlying rationale and provide practical advice. This set of principles can provide a methodological pattern for other researchers and serve as a resource to practitioners working on maternal health and other healthcare fields to emphasize the importance of technical nuance, historical context, and inclusive design when developing NLP technologies for clinical use.


CARE: Extracting Experimental Findings From Clinical Literature

arXiv.org Artificial Intelligence

Extracting fine-grained experimental findings from literature can provide massive utility for scientific applications. Prior work has focused on developing annotation schemas and datasets for limited aspects of this problem, leading to simpler information extraction datasets which do not capture the real-world complexity and nuance required for this task. Focusing on biomedicine, this work presents CARE (Clinical Aggregation-oriented Result Extraction) -- a new IE dataset for the task of extracting clinical findings. We develop a new annotation schema capturing fine-grained findings as n-ary relations between entities and attributes, which includes phenomena challenging for current IE systems such as discontinuous entity spans, nested relations, and variable arity n-ary relations. Using this schema, we collect extensive annotations for 700 abstracts from two sources: clinical trials and case reports. We also benchmark the performance of various state-of-the-art IE systems on our dataset, including extractive models and generative LLMs in fully supervised and limited data settings. Our results demonstrate the difficulty of our dataset -- even SOTA models such as GPT4 struggle, particularly on relation extraction. We release our annotation schema and CARE to encourage further research on extracting and aggregating scientific findings from literature.


LongBoX: Evaluating Transformers on Long-Sequence Clinical Tasks

arXiv.org Artificial Intelligence

Many large language models (LLMs) for medicine have largely been evaluated on short texts, and their ability to handle longer sequences such as a complete electronic health record (EHR) has not been systematically explored. Assessing these models on long sequences is crucial since prior work in the general domain has demonstrated performance degradation of LLMs on longer texts. Motivated by this, we introduce LongBoX, a collection of seven medical datasets in text-to-text format, designed to investigate model performance on long sequences. Preliminary experiments reveal that both medical LLMs (e.g., BioGPT) and strong general domain LLMs (e.g., FLAN-T5) struggle on this benchmark. We further evaluate two techniques designed for long-sequence handling: (i) local-global attention, and (ii) Fusion-in-Decoder (FiD). Our results demonstrate mixed results with long-sequence handling - while scores on some datasets increase, there is substantial room for improvement. We hope that LongBoX facilitates the development of more effective long-sequence techniques for the medical domain. Data and source code are available at https://github.com/Mihir3009/LongBoX.


SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction and Drug Design

arXiv.org Artificial Intelligence

Predicting synergistic drug combinations can help accelerate discovery of cancer treatments, particularly therapies personalized to a patient's specific tumor via biopsied cells. In this paper, we propose a novel setting and models for in-context drug synergy learning. We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets. Our goal is to predict additional drug synergy relationships in that context. Inspired by recent work that pre-trains a GPT language model (LM) to "in-context learn" common function classes, we devise novel pre-training schemes that enable a GPT model to in-context learn "drug synergy functions". Our model -- which does not use any textual corpora, molecular fingerprints, protein interaction or any other domain-specific knowledge -- is able to achieve competitive results. We further integrate our in-context approach with a genetic algorithm to optimize model prompts and select synergy candidates to test after conducting a patient biopsy. Finally, we explore a novel task of inverse drug design which can potentially enable the design of drugs that synergize specifically to target a given patient's "personalized dataset". Our findings can potentially have an important impact on precision cancer medicine, and also raise intriguing questions on non-textual pre-training for LMs.