Goto

Collaborating Authors

 Magistri, Federico


3D Hierarchical Panoptic Segmentation in Real Orchard Environments Across Different Sensors

arXiv.org Artificial Intelligence

Crop yield estimation is a relevant problem in agriculture, because an accurate crop yield estimate can support farmers' decisions on harvesting or precision intervention. Robots can help to automate this process. To do so, they need to be able to perceive the surrounding environment to identify target objects. In this paper, we introduce a novel approach to address the problem of hierarchical panoptic segmentation of apple orchards on 3D data from different sensors. Our approach is able to simultaneously provide semantic segmentation, instance segmentation of trunks and fruits, and instance segmentation of plants (a single trunk with its fruits). This allows us to identify relevant information such as individual plants, fruits, and trunks, and capture the relationship among them, such as precisely estimate the number of fruits associated to each tree in an orchard. Additionally, to efficiently evaluate our approach for hierarchical panoptic segmentation, we provide a dataset designed specifically for this task. Our dataset is recorded in Bonn in a real apple orchard with a variety of sensors, spanning from a terrestrial laser scanner to a RGB-D camera mounted on different robotic platforms. The experiments show that our approach surpasses state-of-the-art approaches in 3D panoptic segmentation in the agricultural domain, while also providing full hierarchical panoptic segmentation. Our dataset has been made publicly available at https://www.ipb.uni-bonn.de/data/hops/. We will provide the open-source implementation of our approach and public competiton for hierarchical panoptic segmentation on the hidden test sets upon paper acceptance.


Open-World Panoptic Segmentation

arXiv.org Artificial Intelligence

Perception is a key building block of autonomously acting vision systems such as autonomous vehicles. It is crucial that these systems are able to understand their surroundings in order to operate safely and robustly. Additionally, autonomous systems deployed in unconstrained real-world scenarios must be able of dealing with novel situations and object that have never been seen before. In this article, we tackle the problem of open-world panoptic segmentation, i.e., the task of discovering new semantic categories and new object instances at test time, while enforcing consistency among the categories that we incrementally discover. We propose Con2MAV, an approach for open-world panoptic segmentation that extends our previous work, ContMAV, which was developed for open-world semantic segmentation. Through extensive experiments across multiple datasets, we show that our model achieves state-of-the-art results on open-world segmentation tasks, while still performing competitively on the known categories. We will open-source our implementation upon acceptance. Additionally, we propose PANIC (Panoptic ANomalies In Context), a benchmark for evaluating open-world panoptic segmentation in autonomous driving scenarios. This dataset, recorded with a multi-modal sensor suite mounted on a car, provides high-quality, pixel-wise annotations of anomalous objects at both semantic and instance level. Our dataset contains 800 images, with more than 50 unknown classes, i.e., classes that do not appear in the training set, and 4000 object instances, making it an extremely challenging dataset for open-world segmentation tasks in the autonomous driving scenario. We provide competitions for multiple open-world tasks on a hidden test set. Our dataset and competitions are available at https://www.ipb.uni-bonn.de/data/panic.


Horticultural Temporal Fruit Monitoring via 3D Instance Segmentation and Re-Identification using Point Clouds

arXiv.org Artificial Intelligence

Robotic fruit monitoring is a key step toward automated agricultural production systems. Robots can significantly enhance plant and temporal fruit monitoring by providing precise, high-throughput assessments that overcome the limitations of traditional manual methods. Fruit monitoring is a challenging task due to the significant variation in size, shape, orientation, and occlusion of fruits. Also, fruits may be harvested or newly grown between recording sessions. Most methods are 2D image-based and they lack the 3D structure, depth, and spatial information, which represent key aspects of fruit monitoring. 3D colored point clouds, instead, can offer this information but they introduce challenges such as their sparsity and irregularity. In this paper, we present a novel approach for temporal fruit monitoring that addresses point clouds collected in a greenhouse over time. Our method segments fruits using a learning-based instance segmentation approach directly on the point cloud. Each segmented fruit is processed by a 3D sparse convolutional neural network to extract descriptors, which are used in an attention-based matching network to associate fruits with their instances from previous data collections. Experimental results on a real dataset of strawberries demonstrate that our approach outperforms other methods for fruits re-identification over time, allowing for precise temporal fruit monitoring in real and complex scenarios.


AdaCropFollow: Self-Supervised Online Adaptation for Visual Under-Canopy Navigation

arXiv.org Artificial Intelligence

Under-canopy agricultural robots can enable various applications like precise monitoring, spraying, weeding, and plant manipulation tasks throughout the growing season. Autonomous navigation under the canopy is challenging due to the degradation in accuracy of RTK-GPS and the large variability in the visual appearance of the scene over time. In prior work, we developed a supervised learning-based perception system with semantic keypoint representation and deployed this in various field conditions. A large number of failures of this system can be attributed to the inability of the perception model to adapt to the domain shift encountered during deployment. In this paper, we propose a self-supervised online adaptation method for adapting the semantic keypoint representation using a visual foundational model, geometric prior, and pseudo labeling. Our preliminary experiments show that with minimal data and fine-tuning of parameters, the keypoint prediction model trained with labels on the source domain can be adapted in a self-supervised manner to various challenging target domains onboard the robot computer using our method. This can enable fully autonomous row-following capability in under-canopy robots across fields and crops without requiring human intervention.


Active Learning of Robot Vision Using Adaptive Path Planning

arXiv.org Artificial Intelligence

Robots need robust and flexible vision systems to perceive and reason about their environments beyond geometry. Most of such systems build upon deep learning approaches. As autonomous robots are commonly deployed in initially unknown environments, pre-training on static datasets cannot always capture the variety of domains and limits the robot's vision performance during missions. Recently, self-supervised as well as fully supervised active learning methods emerged to improve robotic vision. These approaches rely on large in-domain pre-training datasets or require substantial human labelling effort. To address these issues, we present a recent adaptive planning framework for efficient training data collection to substantially reduce human labelling requirements in semantic terrain monitoring missions. To this end, we combine high-quality human labels with automatically generated pseudo labels. Experimental results show that the framework reaches segmentation performance close to fully supervised approaches with drastically reduced human labelling effort while outperforming purely self-supervised approaches. We discuss the advantages and limitations of current methods and outline valuable future research avenues towards more robust and flexible robotic vision systems in unknown environments.


A Dataset and Benchmark for Shape Completion of Fruits for Agricultural Robotics

arXiv.org Artificial Intelligence

As the population is expected to reach 10 billion by 2050, our agricultural production system needs to double its productivity despite a decline of human workforce in the agricultural sector. Autonomous robotic systems are one promising pathway to increase productivity by taking over labor-intensive manual tasks like fruit picking. To be effective, such systems need to monitor and interact with plants and fruits precisely, which is challenging due to the cluttered nature of agricultural environments causing, for example, strong occlusions. Thus, being able to estimate the complete 3D shapes of objects in presence of occlusions is crucial for automating operations such as fruit harvesting. In this paper, we propose the first publicly available 3D shape completion dataset for agricultural vision systems. We provide an RGB-D dataset for estimating the 3D shape of fruits. Specifically, our dataset contains RGB-D frames of single sweet peppers in lab conditions but also in a commercial greenhouse. For each fruit, we additionally collected high-precision point clouds that we use as ground truth. For acquiring the ground truth shape, we developed a measuring process that allows us to record data of real sweet pepper plants, both in the lab and in the greenhouse with high precision, and determine the shape of the sensed fruits. We release our dataset, consisting of almost 7000 RGB-D frames belonging to more than 100 different fruits. We provide segmented RGB-D frames, with camera instrinsics to easily obtain colored point clouds, together with the corresponding high-precision, occlusion-free point clouds obtained with a high-precision laser scanner. We additionally enable evaluation ofshape completion approaches on a hidden test set through a public challenge on a benchmark server.


Deep Reinforcement Learning with Dynamic Graphs for Adaptive Informative Path Planning

arXiv.org Artificial Intelligence

Autonomous robots are often employed for data collection due to their efficiency and low labour costs. A key task in robotic data acquisition is planning paths through an initially unknown environment to collect observations given platform-specific resource constraints, such as limited battery life. Adaptive online path planning in 3D environments is challenging due to the large set of valid actions and the presence of unknown occlusions. To address these issues, we propose a novel deep reinforcement learning approach for adaptively replanning robot paths to map targets of interest in unknown 3D environments. A key aspect of our approach is a dynamically constructed graph that restricts planning actions local to the robot, allowing us to quickly react to newly discovered obstacles and targets of interest. For replanning, we propose a new reward function that balances between exploring the unknown environment and exploiting online-collected data about the targets of interest. Our experiments show that our method enables more efficient target detection compared to state-of-the-art learning and non-learning baselines. We also show the applicability of our approach for orchard monitoring using an unmanned aerial vehicle in a photorealistic simulator.


Semi-Supervised Active Learning for Semantic Segmentation in Unknown Environments Using Informative Path Planning

arXiv.org Artificial Intelligence

Semantic segmentation enables robots to perceive and reason about their environments beyond geometry. Most of such systems build upon deep learning approaches. As autonomous robots are commonly deployed in initially unknown environments, pre-training on static datasets cannot always capture the variety of domains and limits the robot's perception performance during missions. Recently, self-supervised and fully supervised active learning methods emerged to improve a robot's vision. These approaches rely on large in-domain pre-training datasets or require substantial human labelling effort. We propose a planning method for semi-supervised active learning of semantic segmentation that substantially reduces human labelling requirements compared to fully supervised approaches. We leverage an adaptive map-based planner guided towards the frontiers of unexplored space with high model uncertainty collecting training data for human labelling. A key aspect of our approach is to combine the sparse high-quality human labels with pseudo labels automatically extracted from highly certain environment map areas. Experimental results show that our method reaches segmentation performance close to fully supervised approaches with drastically reduced human labelling effort while outperforming self-supervised approaches.


BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level Phenotyping of Sugar Beet Plants under Field Conditions

arXiv.org Artificial Intelligence

Agricultural production is facing severe challenges in the next decades induced by climate change and the need for sustainability, reducing its impact on the environment. Advancements in field management through non-chemical weeding by robots in combination with monitoring of crops by autonomous unmanned aerial vehicles (UAVs) and breeding of novel and more resilient crop varieties are helpful to address these challenges. The analysis of plant traits, called phenotyping, is an essential activity in plant breeding, it however involves a great amount of manual labor. With this paper, we address the problem of automatic fine-grained organ-level geometric analysis needed for precision phenotyping. As the availability of real-world data in this domain is relatively scarce, we propose a novel dataset that was acquired using UAVs capturing high-resolution images of a real breeding trial containing 48 plant varieties and therefore covering great morphological and appearance diversity. This enables the development of approaches for autonomous phenotyping that generalize well to different varieties. Based on overlapping high-resolution images from multiple viewing angles, we compute photogrammetric dense point clouds and provide detailed and accurate point-wise labels for plants, leaves, and salient points as the tip and the base. Additionally, we include measurements of phenotypic traits performed by experts from the German Federal Plant Variety Office on the real plants, allowing the evaluation of new approaches not only on segmentation and keypoint detection but also directly on the downstream tasks. The provided labeled point clouds enable fine-grained plant analysis and support further progress in the development of automatic phenotyping approaches, but also enable further research in surface reconstruction, point cloud completion, and semantic interpretation of point clouds.


An Informative Path Planning Framework for Active Learning in UAV-based Semantic Mapping

arXiv.org Artificial Intelligence

Abstract--Unmanned aerial vehicles (UAVs) are frequently used for aerial mapping and general monitoring tasks. Recent progress in deep learning enabled automated semantic segmentation of imagery to facilitate the interpretation of large-scale complex environments. Commonly used supervised deep learning for segmentation relies on large amounts of pixel-wise labelled data, which is tedious and costly to annotate. The domain-specific visual appearance of aerial environments often prevents the usage of models pre-trained on publicly available datasets. To address this, we propose a novel general planning framework for UAVs to autonomously acquire informative training images for model re-training. Our framework combines the mapped acquisition function information into the UAV's planning objectives. In this way, the UAV adaptively acquires informative aerial images to be manually labelled for model re-training. Experimental results on real-world data and in a photorealistic simulation show that our framework maximises model performance and drastically reduces labelling efforts. Our map-based planners outperform state-of-the-art local planning. Our map-based planners replan a UAV's path (orange, bottom-left) to collect the most informative, e.g. Combined with advances in deep learning for semantic segmentation through fully convolutional improve the robot's vision capabilities in initially unknown neural networks (FCNs) [9, 10], deploying UAVs accelerates environments while minimising the total amount of humanlabelled automated scene understanding in large-scale and complex data. To this end, our approach exploits ideas from aerial environments [11]. Classical deep learning-based semantic AL research and incorporates them into a new informative segmentation models often used in this context are path planning (IPP) framework.