Goto

Collaborating Authors

 Li, Zhu


Optimality and Adaptivity of Deep Neural Features for Instrumental Variable Regression

arXiv.org Machine Learning

We provide a convergence analysis of deep feature instrumental variable (DFIV) regression (Xu et al., 2021), a nonparametric approach to IV regression using data-adaptive features learned by deep neural networks in two stages. We prove that the DFIV algorithm achieves the minimax optimal learning rate when the target structural function lies in a Besov space. This is shown under standard nonparametric IV assumptions, and an additional smoothness assumption on the regularity of the conditional distribution of the covariate given the instrument, which controls the difficulty of Stage 1. We further demonstrate that DFIV, as a data-adaptive algorithm, is superior to fixed-feature (kernel or sieve) IV methods in two ways. First, when the target function possesses low spatial homogeneity (i.e., it has both smooth and spiky/discontinuous regions), DFIV still achieves the optimal rate, while fixed-feature methods are shown to be strictly suboptimal. Second, comparing with kernel-based two-stage regression estimators, DFIV is provably more data efficient in the Stage 1 samples.


AMuSeD: An Attentive Deep Neural Network for Multimodal Sarcasm Detection Incorporating Bi-modal Data Augmentation

arXiv.org Artificial Intelligence

Detecting sarcasm effectively requires a nuanced understanding of context, including vocal tones and facial expressions. The progression towards multimodal computational methods in sarcasm detection, however, faces challenges due to the scarcity of data. To address this, we present AMuSeD (Attentive deep neural network for MUltimodal Sarcasm dEtection incorporating bi-modal Data augmentation). This approach utilizes the Multimodal Sarcasm Detection Dataset (MUStARD) and introduces a two-phase bimodal data augmentation strategy. The first phase involves generating varied text samples through Back Translation from several secondary languages. The second phase involves the refinement of a FastSpeech 2-based speech synthesis system, tailored specifically for sarcasm to retain sarcastic intonations. Alongside a cloud-based Text-to-Speech (TTS) service, this Fine-tuned FastSpeech 2 system produces corresponding audio for the text augmentations. We also investigate various attention mechanisms for effectively merging text and audio data, finding self-attention to be the most efficient for bimodal integration. Our experiments reveal that this combined augmentation and attention approach achieves a significant F1-score of 81.0% in text-audio modalities, surpassing even models that use three modalities from the MUStARD dataset.


Nonparametric Instrumental Regression via Kernel Methods is Minimax Optimal

arXiv.org Machine Learning

We study the kernel instrumental variable algorithm of \citet{singh2019kernel}, a nonparametric two-stage least squares (2SLS) procedure which has demonstrated strong empirical performance. We provide a convergence analysis that covers both the identified and unidentified settings: when the structural function cannot be identified, we show that the kernel NPIV estimator converges to the IV solution with minimum norm. Crucially, our convergence is with respect to the strong $L_2$-norm, rather than a pseudo-norm. Additionally, we characterize the smoothness of the target function without relying on the instrument, instead leveraging a new description of the projected subspace size (this being closely related to the link condition in inverse learning literature). With the subspace size description and under standard kernel learning assumptions, we derive, for the first time, the minimax optimal learning rate for kernel NPIV in the strong $L_2$-norm. Our result demonstrates that the strength of the instrument is essential to achieve efficient learning. We also improve the original kernel NPIV algorithm by adopting a general spectral regularization in stage 1 regression. The modified regularization can overcome the saturation effect of Tikhonov regularization.


Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms

arXiv.org Machine Learning

We study theoretical properties of a broad class of regularized algorithms with vector-valued output. These spectral algorithms include kernel ridge regression, kernel principal component regression, various implementations of gradient descent and many more. Our contributions are twofold. First, we rigorously confirm the so-called saturation effect for ridge regression with vector-valued output by deriving a novel lower bound on learning rates; this bound is shown to be suboptimal when the smoothness of the regression function exceeds a certain level. Second, we present the upper bound for the finite sample risk general vector-valued spectral algorithms, applicable to both well-specified and misspecified scenarios (where the true regression function lies outside of the hypothesis space) which is minimax optimal in various regimes. All of our results explicitly allow the case of infinite-dimensional output variables, proving consistency of recent practical applications.


Nonlinear Meta-Learning Can Guarantee Faster Rates

arXiv.org Machine Learning

Many recent theoretical works on \emph{meta-learning} aim to achieve guarantees in leveraging similar representational structures from related tasks towards simplifying a target task. Importantly, the main aim in theory works on the subject is to understand the extent to which convergence rates -- in learning a common representation -- \emph{may scale with the number $N$ of tasks} (as well as the number of samples per task). First steps in this setting demonstrate this property when both the shared representation amongst tasks, and task-specific regression functions, are linear. This linear setting readily reveals the benefits of aggregating tasks, e.g., via averaging arguments. In practice, however, the representation is often highly nonlinear, introducing nontrivial biases in each task that cannot easily be averaged out as in the linear case. In the present work, we derive theoretical guarantees for meta-learning with nonlinear representations. In particular, assuming the shared nonlinearity maps to an infinite-dimensional RKHS, we show that additional biases can be mitigated with careful regularization that leverages the smoothness of task-specific regression functions,


Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm

arXiv.org Machine Learning

We present the first optimal rates for infinite-dimensional vector-valued ridge regression on a continuous scale of norms that interpolate between $L_2$ and the hypothesis space, which we consider as a vector-valued reproducing kernel Hilbert space. These rates allow to treat the misspecified case in which the true regression function is not contained in the hypothesis space. We combine standard assumptions on the capacity of the hypothesis space with a novel tensor product construction of vector-valued interpolation spaces in order to characterize the smoothness of the regression function. Our upper bound not only attains the same rate as real-valued kernel ridge regression, but also removes the assumption that the target regression function is bounded. For the lower bound, we reduce the problem to the scalar setting using a projection argument. We show that these rates are optimal in most cases and independent of the dimension of the output space. We illustrate our results for the special case of vector-valued Sobolev spaces.


Optimal Rates for Regularized Conditional Mean Embedding Learning

arXiv.org Machine Learning

We address the consistency of a kernel ridge regression estimate of the conditional mean embedding (CME), which is an embedding of the conditional distribution of $Y$ given $X$ into a target reproducing kernel Hilbert space $\mathcal{H}_Y$. The CME allows us to take conditional expectations of target RKHS functions, and has been employed in nonparametric causal and Bayesian inference. We address the misspecified setting, where the target CME is in the space of Hilbert-Schmidt operators acting from an input interpolation space between $\mathcal{H}_X$ and $L_2$, to $\mathcal{H}_Y$. This space of operators is shown to be isomorphic to a newly defined vector-valued interpolation space. Using this isomorphism, we derive a novel and adaptive statistical learning rate for the empirical CME estimator under the misspecified setting. Our analysis reveals that our rates match the optimal $O(\log n / n)$ rates without assuming $\mathcal{H}_Y$ to be finite dimensional. We further establish a lower bound on the learning rate, which shows that the obtained upper bound is optimal.


Sharp Analysis of Random Fourier Features in Classification

arXiv.org Machine Learning

We study the theoretical properties of random Fourier features classification with Lipschitz continuous loss functions such as support vector machine and logistic regression. Utilizing the regularity condition, we show for the first time that random Fourier features classification can achieve $O(1/\sqrt{n})$ learning rate with only $\Omega(\sqrt{n} \log n)$ features, as opposed to $\Omega(n)$ features suggested by previous results. Our study covers the standard feature sampling method for which we reduce the number of features required, as well as a problem-dependent sampling method which further reduces the number of features while still keeping the optimal generalization property. Moreover, we prove that the random Fourier features classification can obtain a fast $O(1/n)$ learning rate for both sampling schemes under Massart's low noise assumption. Our results demonstrate the potential effectiveness of random Fourier features approximation in reducing the computational complexity (roughly from $O(n^3)$ in time and $O(n^2)$ in space to $O(n^2)$ and $O(n\sqrt{n})$ respectively) without having to trade-off the statistical prediction accuracy. In addition, the achieved trade-off in our analysis is at least the same as the optimal results in the literature under the worst case scenario and significantly improves the optimal results under benign regularity conditions.


Towards an Understanding of Benign Overfitting in Neural Networks

arXiv.org Machine Learning

Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss; yet surprisingly, they possess near-optimal prediction performance, contradicting classical learning theory. We examine how these benign overfitting phenomena occur in a two-layer neural network setting where sample covariates are corrupted with noise. We address the high dimensional regime, where the data dimension $d$ grows with the number $n$ of data points. Our analysis combines an upper bound on the bias with matching upper and lower bounds on the variance of the interpolator (an estimator that interpolates the data). These results indicate that the excess learning risk of the interpolator decays under mild conditions. We further show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate, which to our knowledge is the first generalization result for such networks. Finally, our theory predicts that the excess learning risk starts to increase once the number of parameters $s$ grows beyond $O(n^2)$, matching recent empirical findings.


Benign Overfitting and Noisy Features

arXiv.org Machine Learning

Modern machine learning often operates in the regime where the number of parameters is much higher than the number of data points, with zero training loss and yet good generalization, thereby contradicting the classical bias-variance trade-off. This \textit{benign overfitting} phenomenon has recently been characterized using so called \textit{double descent} curves where the risk undergoes another descent (in addition to the classical U-shaped learning curve when the number of parameters is small) as we increase the number of parameters beyond a certain threshold. In this paper, we examine the conditions under which \textit{Benign Overfitting} occurs in the random feature (RF) models, i.e. in a two-layer neural network with fixed first layer weights. We adopt a new view of random feature and show that \textit{benign overfitting} arises due to the noise which resides in such features (the noise may already be present in the data and propagate to the features or it may be added by the user to the features directly) and plays an important implicit regularization role in the phenomenon.