Goto

Collaborating Authors

 Li, Zeju


DeepCircuitX: A Comprehensive Repository-Level Dataset for RTL Code Understanding, Generation, and PPA Analysis

arXiv.org Artificial Intelligence

This paper introduces DeepCircuitX, a comprehensive repository-level dataset designed to advance RTL (Register Transfer Level) code understanding, generation, and power-performance-area (PPA) analysis. Unlike existing datasets that are limited to either file-level RTL code or physical layout data, DeepCircuitX provides a holistic, multilevel resource that spans repository, file, module, and block-level RTL code. This structure enables more nuanced training and evaluation of large language models (LLMs) for RTL-specific tasks. DeepCircuitX is enriched with Chain of Thought (CoT) annotations, offering detailed descriptions of functionality and structure at multiple levels. These annotations enhance its utility for a wide range of tasks, including RTL code understanding, generation, and completion. Additionally, the dataset includes synthesized netlists and PPA metrics, facilitating early-stage design exploration and enabling accurate PPA prediction directly from RTL code. We demonstrate the dataset's effectiveness on various LLMs finetuned with our dataset and confirm the quality with human evaluations. Our results highlight DeepCircuitX as a critical resource for advancing RTL-focused machine learning applications in hardware design automation.Our data is available at https://zeju.gitbook.io/lcm-team.


DeepRTL: Bridging Verilog Understanding and Generation with a Unified Representation Model

arXiv.org Artificial Intelligence

Recent advancements in large language models (LLMs) have shown significant potential for automating hardware description language (HDL) code generation from high-level natural language instructions. While fine-tuning has improved LLMs' performance in hardware design tasks, prior efforts have largely focused on Verilog generation, overlooking the equally critical task of Verilog understanding. Furthermore, existing models suffer from weak alignment between natural language descriptions and Verilog code, hindering the generation of high-quality, synthesizable designs. To address these issues, we present DeepRTL, a unified representation model that excels in both Verilog understanding and generation. Based on CodeT5+, DeepRTL is fine-tuned on a comprehensive dataset that aligns Verilog code with rich, multi-level natural language descriptions. We also introduce the first benchmark for Verilog understanding and take the initiative to apply embedding similarity and GPT Score to evaluate the models' understanding capabilities. These metrics capture semantic similarity more accurately than traditional methods like BLEU and ROUGE, which are limited to surface-level n-gram overlaps. By adapting curriculum learning to train DeepRTL, we enable it to significantly outperform GPT-4 in Verilog understanding tasks, while achieving performance on par with OpenAI's o1-preview model in Verilog generation tasks.


Dyve: Thinking Fast and Slow for Dynamic Process Verification

arXiv.org Artificial Intelligence

We present Dyve, a dynamic process verifier that enhances reasoning error detection in large language models by integrating fast and slow thinking, inspired by Kahneman's Systems Theory. Dyve adaptively applies immediate token-level confirmation System 1 for straightforward steps and comprehensive analysis System 2 for complex ones. Leveraging a novel step-wise consensus-filtered process supervision technique, combining Monte Carlo estimation with LLM based evaluation, Dyve curates high-quality supervision signals from noisy data. Experimental results on ProcessBench and the MATH dataset confirm that Dyve significantly outperforms existing process-based verifiers and boosts performance in Best-of-N settings.


Learning Label Refinement and Threshold Adjustment for Imbalanced Semi-Supervised Learning

arXiv.org Artificial Intelligence

Semi-supervised learning (SSL) algorithms struggle to perform well when exposed to imbalanced training data. In this scenario, the generated pseudo-labels can exhibit a bias towards the majority class, and models that employ these pseudo-labels can further amplify this bias. Here we investigate pseudo-labeling strategies for imbalanced SSL including pseudo-label refinement and threshold adjustment, through the lens of statistical analysis. We find that existing SSL algorithms which generate pseudo-labels using heuristic strategies or uncalibrated model confidence are unreliable when imbalanced class distributions bias pseudo-labels. To address this, we introduce SEmi-supervised learning with pseudo-label optimization based on VALidation data (SEVAL) to enhance the quality of pseudo-labelling for imbalanced SSL. We propose to learn refinement and thresholding parameters from a partition of the training dataset in a class-balanced way. SEVAL adapts to specific tasks with improved pseudo-labels accuracy and ensures pseudo-labels correctness on a per-class basis. Our experiments show that SEVAL surpasses state-of-the-art SSL methods, delivering more accurate and effective pseudo-labels in various imbalanced SSL situations. SEVAL, with its simplicity and flexibility, can enhance various SSL techniques effectively.


Exploring the Distributed Knowledge Congruence in Proxy-data-free Federated Distillation

arXiv.org Artificial Intelligence

Federated learning (FL) is a privacy-preserving machine learning paradigm in which the server periodically aggregates local model parameters from clients without assembling their private data. Constrained communication and personalization requirements pose severe challenges to FL. Federated distillation (FD) is proposed to simultaneously address the above two problems, which exchanges knowledge between the server and clients, supporting heterogeneous local models while significantly reducing communication overhead. However, most existing FD methods require a proxy dataset, which is often unavailable in reality. A few recent proxy-data-free FD approaches can eliminate the need for additional public data, but suffer from remarkable discrepancy among local knowledge due to client-side model heterogeneity, leading to ambiguous representation on the server and inevitable accuracy degradation. To tackle this issue, we propose a proxy-data-free FD algorithm based on distributed knowledge congruence (FedDKC). FedDKC leverages well-designed refinement strategies to narrow local knowledge differences into an acceptable upper bound, so as to mitigate the negative effects of knowledge incongruence. Specifically, from perspectives of peak probability and Shannon entropy of local knowledge, we design kernel-based knowledge refinement (KKR) and searching-based knowledge refinement (SKR) respectively, and theoretically guarantee that the refined-local knowledge can satisfy an approximately-similar distribution and be regarded as congruent. Extensive experiments conducted on three common datasets demonstrate that our proposed FedDKC significantly outperforms the state-of-the-art on various heterogeneous settings while evidently improving the convergence speed.


Post-Deployment Adaptation with Access to Source Data via Federated Learning and Source-Target Remote Gradient Alignment

arXiv.org Artificial Intelligence

Deployment of Deep Neural Networks in medical imaging is hindered by distribution shift between training data and data processed after deployment, causing performance degradation. Post-Deployment Adaptation (PDA) addresses this by tailoring a pre-trained, deployed model to the target data distribution using limited labelled or entirely unlabelled target data, while assuming no access to source training data as they cannot be deployed with the model due to privacy concerns and their large size. This makes reliable adaptation challenging due to limited learning signal. This paper challenges this assumption and introduces FedPDA, a novel adaptation framework that brings the utility of learning from remote data from Federated Learning into PDA. FedPDA enables a deployed model to obtain information from source data via remote gradient exchange, while aiming to optimize the model specifically for the target domain. Tailored for FedPDA, we introduce a novel optimization method StarAlign (Source-Target Remote Gradient Alignment) that aligns gradients between source-target domain pairs by maximizing their inner product, to facilitate learning a target-specific model. We demonstrate the method's effectiveness using multi-center databases for the tasks of cancer metastases detection and skin lesion classification, where our method compares favourably to previous work. Code is available at: https://github.com/FelixWag/StarAlign


Joint Optimization of Class-Specific Training- and Test-Time Data Augmentation in Segmentation

arXiv.org Artificial Intelligence

This paper presents an effective and general data augmentation framework for medical image segmentation. We adopt a computationally efficient and data-efficient gradient-based meta-learning scheme to explicitly align the distribution of training and validation data which is used as a proxy for unseen test data. We improve the current data augmentation strategies with two core designs. First, we learn class-specific training-time data augmentation (TRA) effectively increasing the heterogeneity within the training subsets and tackling the class imbalance common in segmentation. Second, we jointly optimize TRA and test-time data augmentation (TEA), which are closely connected as both aim to align the training and test data distribution but were so far considered separately in previous works. We demonstrate the effectiveness of our method on four medical image segmentation tasks across different scenarios with two state-of-the-art segmentation models, DeepMedic and nnU-Net. Extensive experimentation shows that the proposed data augmentation framework can significantly and consistently improve the segmentation performance when compared to existing solutions. Code is publicly available.


Multi-source Education Knowledge Graph Construction and Fusion for College Curricula

arXiv.org Artificial Intelligence

The field of education has undergone a significant transformation due to the rapid advancements in Artificial Intelligence (AI). Among the various AI technologies, Knowledge Graphs (KGs) using Natural Language Processing (NLP) have emerged as powerful visualization tools for integrating multifaceted information. In the context of university education, the availability of numerous specialized courses and complicated learning resources often leads to inferior learning outcomes for students. In this paper, we propose an automated framework for knowledge extraction, visual KG construction, and graph fusion, tailored for the major of Electronic Information. Furthermore, we perform data analysis to investigate the correlation degree and relationship between courses, rank hot knowledge concepts, and explore the intersection of courses. Our objective is to enhance the learning efficiency of students and to explore new educational paradigms enabled by AI. The proposed framework is expected to enable students to better understand and appreciate the intricacies of their field of study by providing them with a comprehensive understanding of the relationships between the various concepts and courses.


Context Label Learning: Improving Background Class Representations in Semantic Segmentation

arXiv.org Artificial Intelligence

Background samples provide key contextual information for segmenting regions of interest (ROIs). However, they always cover a diverse set of structures, causing difficulties for the segmentation model to learn good decision boundaries with high sensitivity and precision. The issue concerns the highly heterogeneous nature of the background class, resulting in multi-modal distributions. Empirically, we find that neural networks trained with heterogeneous background struggle to map the corresponding contextual samples to compact clusters in feature space. As a result, the distribution over background logit activations may shift across the decision boundary, leading to systematic over-segmentation across different datasets and tasks. In this study, we propose context label learning (CoLab) to improve the context representations by decomposing the background class into several subclasses. Specifically, we train an auxiliary network as a task generator, along with the primary segmentation model, to automatically generate context labels that positively affect the ROI segmentation accuracy. Extensive experiments are conducted on several challenging segmentation tasks and datasets. The results demonstrate that CoLab can guide the segmentation model to map the logits of background samples away from the decision boundary, resulting in significantly improved segmentation accuracy. Code is available.


Estimating Model Performance under Domain Shifts with Class-Specific Confidence Scores

arXiv.org Artificial Intelligence

Machine learning models are typically deployed in a test setting that differs from the training setting, potentially leading to decreased model performance because of domain shift. If we could estimate the performance that a pre-trained model would achieve on data from a specific deployment setting, for example a certain clinic, we could judge whether the model could safely be deployed or if its performance degrades unacceptably on the specific data. Existing approaches estimate this based on the confidence of predictions made on unlabeled test data from the deployment's domain. We find existing methods struggle with data that present class imbalance, because the methods used to calibrate confidence do not account for bias induced by class imbalance, consequently failing to estimate class-wise accuracy. Here, we introduce class-wise calibration within the framework of performance estimation for imbalanced datasets. Specifically, we derive class-specific modifications of state-of-the-art confidence-based model evaluation methods including temperature scaling (TS), difference of confidences (DoC), and average thresholded confidence (ATC). We also extend the methods to estimate Dice similarity coefficient (DSC) in image segmentation. We conduct experiments on four tasks and find the proposed modifications consistently improve the estimation accuracy for imbalanced datasets. Our methods improve accuracy estimation by 18\% in classification under natural domain shifts, and double the estimation accuracy on segmentation tasks, when compared with prior methods.