Li, Shiying
Metric properties of partial and robust Gromov-Wasserstein distances
Chhoa, Jannatul, Ivanitskiy, Michael, Jiang, Fushuai, Li, Shiying, McBride, Daniel, Needham, Tom, O'Hare, Kaiying
The Gromov-Wasserstein (GW) distances define a family of metrics, based on ideas from optimal transport, which enable comparisons between probability measures defined on distinct metric spaces. They are particularly useful in areas such as network analysis and geometry processing, as computation of a GW distance involves solving for registration between the objects which minimizes geometric distortion. Although GW distances have proven useful for various applications in the recent machine learning literature, it has been observed that they are inherently sensitive to outlier noise and cannot accommodate partial matching. This has been addressed by various constructions building on the GW framework; in this article, we focus specifically on a natural relaxation of the GW optimization problem, introduced by Chapel et al., which is aimed at addressing exactly these shortcomings. Our goal is to understand the theoretical properties of this relaxed optimization problem, from the viewpoint of metric geometry. While the relaxed problem fails to induce a metric, we derive precise characterizations of how it fails the axioms of non-degeneracy and triangle inequality. These observations lead us to define a novel family of distances, whose construction is inspired by the Prokhorov and Ky Fan distances, as well as by the recent work of Raghvendra et al.\ on robust versions of classical Wasserstein distance. We show that our new distances define true metrics, that they induce the same topology as the GW distances, and that they enjoy additional robustness to perturbations. These results provide a mathematically rigorous basis for using our robust partial GW distances in applications where outliers and partial matching are concerns.
Linear optimal transport subspaces for point set classification
Rabbi, Mohammad Shifat E, Pathan, Naqib Sad, Li, Shiying, Zhuang, Yan, Rubaiyat, Abu Hasnat Mohammad, Rohde, Gustavo K
Learning from point sets is an essential component in many computer vision and machine learning applications. Native, unordered, and permutation invariant set structure space is challenging to model, particularly for point set classification under spatial deformations. Here we propose a framework for classifying point sets experiencing certain types of spatial deformations, with a particular emphasis on datasets featuring affine deformations. Our approach employs the Linear Optimal Transport (LOT) transform to obtain a linear embedding of set-structured data. Utilizing the mathematical properties of the LOT transform, we demonstrate its capacity to accommodate variations in point sets by constructing a convex data space, effectively simplifying point set classification problems. Our method, which employs a nearest-subspace algorithm in the LOT space, demonstrates label efficiency, non-iterative behavior, and requires no hyper-parameter tuning. It achieves competitive accuracies compared to state-of-the-art methods across various point set classification tasks. Furthermore, our approach exhibits robustness in out-of-distribution scenarios where training and test distributions vary in terms of deformation magnitudes.
Approximation properties of slice-matching operators
Li, Shiying, Moosmueller, Caroline
Iterative slice-matching procedures are efficient schemes for transferring a source measure to a target measure, especially in high dimensions. These schemes have been successfully used in applications such as color transfer and shape retrieval, and are guaranteed to converge under regularity assumptions. In this paper, we explore approximation properties related to a single step of such iterative schemes by examining an associated slice-matching operator, depending on a source measure, a target measure, and slicing directions. In particular, we demonstrate an invariance property with respect to the source measure, an equivariance property with respect to the target measure, and Lipschitz continuity concerning the slicing directions. We furthermore establish error bounds corresponding to approximating the target measure by one step of the slice-matching scheme and characterize situations in which the slice-matching operator recovers the optimal transport map between two measures. We also investigate connections to affine registration problems with respect to (sliced) Wasserstein distances. These connections can be also be viewed as extensions to the invariance and equivariance properties of the slice-matching operator and illustrate the extent to which slice-matching schemes incorporate affine effects.
The Radon Signed Cumulative Distribution Transform and its applications in classification of Signed Images
Gong, Le, Li, Shiying, Pathan, Naqib Sad, Shifat-E-Rabbi, Mohammad, Rohde, Gustavo K., Rubaiyat, Abu Hasnat Mohammad, Thareja, Sumati
Here we describe a new image representation technique based on the mathematics of transport and optimal transport. The method relies on the combination of the well-known Radon transform for images and a recent signal representation method called the Signed Cumulative Distribution Transform. The newly proposed method generalizes previous transport-related image representation methods to arbitrary functions (images), and thus can be used in more applications. We describe the new transform, and some of its mathematical properties and demonstrate its ability to partition image classes with real and simulated data. In comparison to existing transport transform methods, as well as deep learning-based classification methods, the new transform more accurately represents the information content of signed images, and thus can be used to obtain higher classification accuracies. The implementation of the proposed method in Python language is integrated as a part of the software package PyTransKit, available on Github.
Measure transfer via stochastic slicing and matching
Li, Shiying, Moosmueller, Caroline
This paper studies iterative schemes for measure transfer and approximation problems, which are defined through a slicing-and-matching procedure. Similar to the sliced Wasserstein distance, these schemes benefit from the availability of closed-form solutions for the one-dimensional optimal transport problem and the associated computational advantages. While such schemes have already been successfully utilized in data science applications, not too many results on their convergence are available. The main contribution of this paper is an almost sure convergence proof for stochastic slicing-and-matching schemes. The proof builds on an interpretation as a stochastic gradient descent scheme on the Wasserstein space. Numerical examples on step-wise image morphing are demonstrated as well.
Learning Energy-Based Models With Adversarial Training
Yin, Xuwang, Li, Shiying, Rohde, Gustavo K.
We study a new approach to learning energy-based models (EBMs) based on adversarial training (AT). We show that (binary) AT learns a special kind of energy function that models the support of the data distribution, and the learning process is closely related to MCMC-based maximum likelihood learning of EBMs. We further propose improved techniques for generative modeling with AT, and demonstrate that this new approach is capable of generating diverse and realistic images. Aside from having competitive image generation performance to explicit EBMs, the studied approach is stable to train, is well-suited for image translation tasks, and exhibits strong out-of-distribution adversarial robustness. Our results demonstrate the viability of the AT approach to generative modeling, suggesting that AT is a competitive alternative approach to learning EBMs.
Partitioning signal classes using transport transforms for data analysis and machine learning
Aldroubi, Akram, Li, Shiying, Rohde, Gustavo K.
A relatively new set of transport-based transforms (CDT, R-CDT, LOT) have shown their strength and great potential in various image and data processing tasks such as parametric signal estimation, classification, cancer detection among many others. It is hence worthwhile to elucidate some of the mathematical properties that explain the successes of these transforms when they are used as tools in data analysis, signal processing or data classification. In particular, we give conditions under which classes of signals that are created by algebraic generative models are transformed into convex sets by the transport transforms. Such convexification of the classes simplify the classification and other data analysis and processing problems when viewed in the transform domain. More specifically, we study the extent and limitation of the convexification ability of these transforms under an algebraic generative modeling framework. We hope that this paper will serve as an introduction to these transforms and will encourage mathematicians and other researchers to further explore the theoretical underpinnings and algorithmic tools that will help understand the successes of these transforms and lay the groundwork for further successful applications.