Goto

Collaborating Authors

 Li, Pei


Reinforced Symbolic Learning with Logical Constraints for Predicting Turbine Blade Fatigue Life

arXiv.org Artificial Intelligence

Accurate prediction of turbine blade fatigue life is essential for ensuring the safety and reliability of aircraft engines. A significant challenge in this domain is uncovering the intrinsic relationship between mechanical properties and fatigue life. This paper introduces Reinforced Symbolic Learning (RSL), a method that derives predictive formulas linking these properties to fatigue life. RSL incorporates logical constraints during symbolic optimization, ensuring that the generated formulas are both physically meaningful and interpretable. The optimization process is further enhanced using deep reinforcement learning, which efficiently guides the symbolic regression towards more accurate models. The proposed RSL method was evaluated on two turbine blade materials, GH4169 and TC4, to identify optimal fatigue life prediction models. When compared with six empirical formulas and five machine learning algorithms, RSL not only produces more interpretable formulas but also achieves superior or comparable predictive accuracy. Additionally, finite element simulations were conducted to assess mechanical properties at critical points on the blade, which were then used to predict fatigue life under various operating conditions.


A Digital Twin Framework for Physical-Virtual Integration in V2X-Enabled Connected Vehicle Corridors

arXiv.org Artificial Intelligence

Transportation Cyber-Physical Systems (T-CPS) are critical in improving traffic safety, reliability, and sustainability by integrating computing, communication, and control in transportation systems. The connected vehicle corridor is at the forefront of this transformation, where Cellular Vehicle-to-Everything (C-V2X) technology facilitates real-time data exchange between infrastructure, vehicles, and road users. However, challenges remain in processing and synchronizing the vast V2X data from vehicles and roadside units, particularly when ensuring scalability, data integrity, and operational resilience. This paper presents a digital twin framework for T-CPS, developed from a real-world connected vehicle corridor to address these challenges. By leveraging C-V2X technology and real-time data from infrastructure, vehicles, and road users, the digital twin accurately replicates vehicle behaviors, signal phases, and traffic patterns within the CARLA simulation environment. This framework demonstrates high fidelity between physical and digital systems and ensures robust synchronization of vehicle trajectories and signal phases through extensive experiments. Moreover, the digital twin's scalable and redundant architecture enhances data integrity, making it capable of supporting future large-scale C-V2X deployments. The digital twin is a vital tool in T-CPS, enabling real-time traffic monitoring, prediction, and optimization to enhance the reliability and safety of transportation systems.


Goal-based Neural Physics Vehicle Trajectory Prediction Model

arXiv.org Artificial Intelligence

Vehicle trajectory prediction plays a vital role in intelligent transportation systems and autonomous driving, as it significantly affects vehicle behavior planning and control, thereby influencing traffic safety and efficiency. Numerous studies have been conducted to predict short-term vehicle trajectories in the immediate future. However, long-term trajectory prediction remains a major challenge due to accumulated errors and uncertainties. Additionally, balancing accuracy with interpretability in the prediction is another challenging issue in predicting vehicle trajectory. To address these challenges, this paper proposes a Goal-based Neural Physics Vehicle Trajectory Prediction Model (GNP). The GNP model simplifies vehicle trajectory prediction into a two-stage process: determining the vehicle's goal and then choosing the appropriate trajectory to reach this goal. The GNP model contains two sub-modules to achieve this process. The first sub-module employs a multi-head attention mechanism to accurately predict goals. The second sub-module integrates a deep learning model with a physics-based social force model to progressively predict the complete trajectory using the generated goals. The GNP demonstrates state-of-the-art long-term prediction accuracy compared to four baseline models. We provide interpretable visualization results to highlight the multi-modality and inherent nature of our neural physics framework. Additionally, ablation studies are performed to validate the effectiveness of our key designs.


Real-World Data Inspired Interactive Connected Traffic Scenario Generation

arXiv.org Artificial Intelligence

Simulation is a crucial step in ensuring accurate, efficient, and realistic Connected and Autonomous Vehicles (CAVs) testing and validation. As the adoption of CAV accelerates, the integration of real-world data into simulation environments becomes increasingly critical. Among various technologies utilized by CAVs, Vehicle-to-Everything (V2X) communication plays a crucial role in ensuring a seamless transmission of information between CAVs, infrastructure, and other road users. However, most existing studies have focused on developing and testing communication protocols, resource allocation strategies, and data dissemination techniques in V2X. There is a gap where real-world V2X data is integrated into simulations to generate diverse and high-fidelity traffic scenarios. To fulfill this research gap, we leverage real-world Signal Phase and Timing (SPaT) data from Roadside Units (RSUs) to enhance the fidelity of CAV simulations. Moreover, we developed an algorithm that enables Autonomous Vehicles (AVs) to respond dynamically to real-time traffic signal data, simulating realistic V2X communication scenarios. Such high-fidelity simulation environments can generate multimodal data, including trajectory, semantic camera, depth camera, and bird's eye view data for various traffic scenarios. The generated scenarios and data provide invaluable insights into AVs' interactions with traffic infrastructure and other road users. This work aims to bridge the gap between theoretical research and practical deployment of CAVs, facilitating the development of smarter and safer transportation systems.


Enhancing Pedestrian Trajectory Prediction with Crowd Trip Information

arXiv.org Artificial Intelligence

Pedestrian trajectory prediction is essential for various applications in active traffic management, urban planning, traffic control, crowd management, and autonomous driving, aiming to enhance traffic safety and efficiency. Accurately predicting pedestrian trajectories requires a deep understanding of individual behaviors, social interactions, and road environments. Existing studies have developed various models to capture the influence of social interactions and road conditions on pedestrian trajectories. However, these approaches are limited by the lack of a comprehensive view of social interactions and road environments. To address these limitations and enhance the accuracy of pedestrian trajectory prediction, we propose a novel approach incorporating trip information as a new modality into pedestrian trajectory models. We propose RNTransformer, a generic model that utilizes crowd trip information to capture global information on social interactions. We incorporated RNTransformer with various socially aware local pedestrian trajectory prediction models to demonstrate its performance. Specifically, by leveraging a pre-trained RNTransformer when training different pedestrian trajectory prediction models, we observed improvements in performance metrics: a 1.3/2.2% enhancement in ADE/FDE on Social-LSTM, a 6.5/28.4% improvement on Social-STGCNN, and an 8.6/4.3% improvement on S-Implicit. Evaluation results demonstrate that RNTransformer significantly enhances the accuracy of various pedestrian trajectory prediction models across multiple datasets. Further investigation reveals that the RNTransformer effectively guides local models to more accurate directions due to the consideration of global information. By exploring crowd behavior within the road network, our approach shows great promise in improving pedestrian safety through accurate trajectory predictions.


Three-layer deep learning network random trees for fault detection in chemical production process

arXiv.org Artificial Intelligence

With the development of technology, the chemical production process is becoming increasingly complex and large-scale, making fault detection particularly important. However, current detective methods struggle to address the complexities of large-scale production processes. In this paper, we integrate the strengths of deep learning and machine learning technologies, combining the advantages of bidirectional long and short-term memory neural networks, fully connected neural networks, and the extra trees algorithm to propose a novel fault detection model named three-layer deep learning network random trees (TDLN-trees). First, the deep learning component extracts temporal features from industrial data, combining and transforming them into a higher-level data representation. Second, the machine learning component processes and classifies the features extracted in the first step. An experimental analysis based on the Tennessee Eastman process verifies the superiority of the proposed method.


Demystifying the Physics of Deep Reinforcement Learning-Based Autonomous Vehicle Decision-Making

arXiv.org Artificial Intelligence

With the advent of universal function approximators in the domain of reinforcement learning, the number of practical applications leveraging deep reinforcement learning (DRL) has exploded. Decision-making in autonomous vehicles (AVs) has emerged as a chief application among them, taking the sensor data or the higher-order kinematic variables as the input and providing a discrete choice or continuous control output. There has been a continuous effort to understand the black-box nature of the DRL models, but so far, there hasn't been any discussion (to the best of authors' knowledge) about how the models learn the physical process. This presents an overwhelming limitation that restricts the real-world deployment of DRL in AVs. Therefore, in this research work, we try to decode the knowledge learnt by the attention-based DRL framework about the physical process. We use a continuous proximal policy optimization-based DRL algorithm as the baseline model and add a multi-head attention framework in an open-source AV simulation environment. We provide some analytical techniques for discussing the interpretability of the trained models in terms of explainability and causality for spatial and temporal correlations. We show that the weights in the first head encode the positions of the neighboring vehicles while the second head focuses on the leader vehicle exclusively. Also, the ego vehicle's action is causally dependent on the vehicles in the target lane spatially and temporally. Through these findings, we reliably show that these techniques can help practitioners decipher the results of the DRL algorithms.


Using physics-based simulation towards eliminating empiricism in extraterrestrial terramechanics applications

arXiv.org Artificial Intelligence

Recently, there has been a surge of international interest in extraterrestrial exploration targeting the Moon, Mars, the moons of Mars, and various asteroids. This contribution discusses how current state-of-the-art Earth-based testing for designing rovers and landers for these missions currently leads to overly optimistic conclusions about the behavior of these devices upon deployment on the targeted celestial bodies. The key misconception is that gravitational offset is necessary during the \textit{terramechanics} testing of rover and lander prototypes on Earth. The body of evidence supporting our argument is tied to a small number of studies conducted during parabolic flights and insights derived from newly revised scaling laws. We argue that what has prevented the community from fully diagnosing the problem at hand is the absence of effective physics-based models capable of simulating terramechanics under low gravity conditions. We developed such a physics-based simulator and utilized it to gauge the mobility of early prototypes of the Volatiles Investigating Polar Exploration Rover (VIPER), which is slated to depart for the Moon in November 2024. This contribution discusses the results generated by this simulator, how they correlate with physical test results from the NASA-Glenn SLOPE lab, and the fallacy of the gravitational offset in rover and lander testing. The simulator developed is open sourced and made publicly available for unfettered use; it can support principled studies that extend beyond trafficability analysis to provide insights into in-situ resource utilization activities, e.g., digging, bulldozing, and berming in low gravity.


PFL-LSTR: A privacy-preserving framework for driver intention inference based on in-vehicle and out-vehicle information

arXiv.org Artificial Intelligence

Intelligent vehicle anticipation of the movement intentions of other drivers can reduce collisions. Typically, when a human driver of another vehicle (referred to as the target vehicle) engages in specific behaviors such as checking the rearview mirror prior to lane change, a valuable clue is therein provided on the intentions of the target vehicle's driver. Furthermore, the target driver's intentions can be influenced and shaped by their driving environment. For example, if the target vehicle is too close to a leading vehicle, it may renege the lane change decision. On the other hand, a following vehicle in the target lane is too close to the target vehicle could lead to its reversal of the decision to change lanes. Knowledge of such intentions of all vehicles in a traffic stream can help enhance traffic safety. Unfortunately, such information is often captured in the form of images/videos. Utilization of personally identifiable data to train a general model could violate user privacy. Federated Learning (FL) is a promising tool to resolve this conundrum. FL efficiently trains models without exposing the underlying data. This paper introduces a Personalized Federated Learning (PFL) model embedded a long short-term transformer (LSTR) framework. The framework predicts drivers' intentions by leveraging in-vehicle videos (of driver movement, gestures, and expressions) and out-of-vehicle videos (of the vehicle's surroundings - frontal/rear areas). The proposed PFL-LSTR framework is trained and tested through real-world driving data collected from human drivers at Interstate 65 in Indiana. The results suggest that the PFL-LSTR exhibits high adaptability and high precision, and that out-of-vehicle information (particularly, the driver's rear-mirror viewing actions) is important because it helps reduce false positives and thereby enhances the precision of driver intention inference.


FedBA: Non-IID Federated Learning Framework in UAV Networks

arXiv.org Artificial Intelligence

With the development and progress of science and technology, the Internet of Things(IoT) has gradually entered people's lives, bringing great convenience to our lives and improving people's work efficiency. Specifically, the IoT can replace humans in jobs that they cannot perform. As a new type of IoT vehicle, the current status and trend of research on Unmanned Aerial Vehicle(UAV) is gratifying, and the development prospect is very promising. However, privacy and communication are still very serious issues in drone applications. This is because most drones still use centralized cloud-based data processing, which may lead to leakage of data collected by drones. At the same time, the large amount of data collected by drones may incur greater communication overhead when transferred to the cloud. Federated learning as a means of privacy protection can effectively solve the above two problems. However, federated learning when applied to UAV networks also needs to consider the heterogeneity of data, which is caused by regional differences in UAV regulation. In response, this paper proposes a new algorithm FedBA to optimize the global model and solves the data heterogeneity problem. In addition, we apply the algorithm to some real datasets, and the experimental results show that the algorithm outperforms other algorithms and improves the accuracy of the local model for UAVs.