Goto

Collaborating Authors

 Li, Bingxuan


METAL: A Multi-Agent Framework for Chart Generation with Test-Time Scaling

arXiv.org Artificial Intelligence

Chart generation aims to generate code to produce charts satisfying the desired visual properties, e.g., texts, layout, color, and type. It has great potential to empower the automatic professional report generation in financial analysis, research presentation, education, and healthcare. In this work, we build a vision-language model (VLM) based multi-agent framework for effective automatic chart generation. Generating high-quality charts requires both strong visual design skills and precise coding capabilities that embed the desired visual properties into code. Such a complex multi-modal reasoning process is difficult for direct prompting of VLMs. To resolve these challenges, we propose METAL, a multi-agent framework that decomposes the task of chart generation into the iterative collaboration among specialized agents. METAL achieves 5.2% improvement over the current best result in the chart generation task. The METAL framework exhibits the phenomenon of test-time scaling: its performance increases monotonically as the logarithmic computational budget grows from 512 to 8192 tokens. In addition, we find that separating different modalities during the critique process of METAL boosts the self-correction capability of VLMs in the multimodal context.


Contrastive Visual Data Augmentation

arXiv.org Artificial Intelligence

Large multimodal models (LMMs) often struggle to recognize novel concepts, as they rely on pre-trained knowledge and have limited ability to capture subtle visual details. Domain-specific knowledge gaps in training also make them prone to confusing visually similar, commonly misrepresented, or low-resource concepts. To help LMMs better align nuanced visual features with language, improving their ability to recognize and reason about novel or rare concepts, we propose a Contrastive visual Data Augmentation (CoDA) strategy. CoDA extracts key contrastive textual and visual features of target concepts against the known concepts they are misrecognized as, and then uses multimodal generative models to produce targeted synthetic data. Automatic filtering of extracted features and augmented images is implemented to guarantee their quality, as verified by human annotators. We show the effectiveness and efficiency of CoDA on low-resource concept and diverse scene recognition datasets including INaturalist and SUN. We additionally collect NovelSpecies, a benchmark dataset consisting of newly discovered animal species that are guaranteed to be unseen by LMMs. LLaVA-1.6 1-shot updating results on these three datasets show CoDA significantly improves SOTA visual data augmentation strategies by 12.3% (NovelSpecies), 5.1% (SUN), and 6.0% (iNat) absolute gains in accuracy.


VISCO: Benchmarking Fine-Grained Critique and Correction Towards Self-Improvement in Visual Reasoning

arXiv.org Artificial Intelligence

The ability of large vision-language models (LVLMs) to critique and correct their reasoning is an essential building block towards their self-improvement. However, a systematic analysis of such capabilities in LVLMs is still lacking. We propose VISCO, the first benchmark to extensively analyze the fine-grained critique and correction capabilities of LVLMs. Compared to existing work that uses a single scalar value to critique the entire reasoning [4], VISCO features dense and fine-grained critique, requiring LVLMs to evaluate the correctness of each step in the chain-of-thought and provide natural language explanations to support their judgments. Extensive evaluation of 24 LVLMs demonstrates that human-written critiques significantly enhance the performance after correction, showcasing the potential of the self-improvement strategy. However, the model-generated critiques are less helpful and sometimes detrimental to the performance, suggesting that critique is the crucial bottleneck. We identified three common patterns in critique failures: failure to critique visual perception, reluctance to "say no", and exaggerated assumption of error propagation. To address these issues, we propose an effective LookBack strategy that revisits the image to verify each piece of information in the initial reasoning. LookBack significantly improves critique and correction performance by up to 13.5%.


st-DTPM: Spatial-Temporal Guided Diffusion Transformer Probabilistic Model for Delayed Scan PET Image Prediction

arXiv.org Artificial Intelligence

PET imaging is widely employed for observing biological metabolic activities within the human body. However, numerous benign conditions can cause increased uptake of radiopharmaceuticals, confounding differentiation from malignant tumors. Several studies have indicated that dual-time PET imaging holds promise in distinguishing between malignant and benign tumor processes. Nevertheless, the hour-long distribution period of radiopharmaceuticals post-injection complicates the determination of optimal timing for the second scan, presenting challenges in both practical applications and research. Notably, we have identified that delay time PET imaging can be framed as an image-to-image conversion problem. Motivated by this insight, we propose a novel spatial-temporal guided diffusion transformer probabilistic model (st-DTPM) to solve dual-time PET imaging prediction problem. Specifically, this architecture leverages the U-net framework that integrates patch-wise features of CNN and pixel-wise relevance of Transformer to obtain local and global information. And then employs a conditional DDPM model for image synthesis. Furthermore, on spatial condition, we concatenate early scan PET images and noisy PET images on every denoising step to guide the spatial distribution of denoising sampling. On temporal condition, we convert diffusion time steps and delay time to a universal time vector, then embed it to each layer of model architecture to further improve the accuracy of predictions. Experimental results demonstrated the superiority of our method over alternative approaches in preserving image quality and structural information, thereby affirming its efficacy in predictive task.


Control Large Language Models via Divide and Conquer

arXiv.org Artificial Intelligence

This paper investigates controllable generation for large language models (LLMs) with prompt-based control, focusing on Lexically Constrained Generation (LCG). We systematically evaluate the performance of LLMs on satisfying lexical constraints with prompt-based control, as well as their efficacy in downstream applications. We conclude that LLMs face significant challenges in consistently satisfying lexical constraints with prompt-based control. We identified three key limitations of LLMs for LCG, including (1) position bias, where LLMs tend to satisfy constraints that appear in specific positions within the input; (2) low responsiveness to decoding parameters, which render minimal impact on control of LLMs; and (3) struggle with handling the inherent complexity of certain constraints (e.g., compound words). To address these issues, we introduce a Divide and Conquer Generation strategy, effective for both white-box and black-box LLMs, to enhance LLMs performance in LCG tasks, which demonstrates over 90% improvement on success rate in the most challenging LCG task. Our analysis provides valuable insights into the performance of LLMs in LCG with prompt-based control, and our proposed strategy offers a pathway to more sophisticated and customized text generation applications.


Latent Feature Mining for Predictive Model Enhancement with Large Language Models

arXiv.org Artificial Intelligence

Predictive modeling often faces challenges due to limited data availability and quality, especially in domains where collected features are weakly correlated with outcomes and where additional feature collection is constrained by ethical or practical difficulties. Traditional machine learning (ML) models struggle to incorporate unobserved yet critical factors. In this work, we introduce an effective approach to formulate latent feature mining as text-to-text propositional logical reasoning. We propose FLAME (Faithful Latent Feature Mining for Predictive Model Enhancement), a framework that leverages large language models (LLMs) to augment observed features with latent features and enhance the predictive power of ML models in downstream tasks. Our framework is generalizable across various domains with necessary domain-specific adaptation, as it is designed to incorporate contextual information unique to each area, ensuring effective transfer to different areas facing similar data availability challenges. We validate our framework with two case studies: (1) the criminal justice system, a domain characterized by limited and ethically challenging data collection; (2) the healthcare domain, where patient privacy concerns and the complexity of medical data limit comprehensive feature collection. Our results show that inferred latent features align well with ground truth labels and significantly enhance the downstream classifier.


Beyond ESM2: Graph-Enhanced Protein Sequence Modeling with Efficient Clustering

arXiv.org Artificial Intelligence

Proteins are essential to life's processes, underpinning evolution and diversity. Advances in sequencing technology have revealed millions of proteins, underscoring the need for sophisticated pre-trained protein models for biological analysis and AI development. Facebook's ESM2, the most advanced protein language model to date, leverages a masked prediction task for unsupervised learning, crafting amino acid representations with notable biochemical accuracy. Yet, it lacks in delivering functional protein insights, signaling an opportunity for enhancing representation quality.Our study addresses this gap by incorporating protein family classification into ESM2's training.This approach, augmented with Community Propagation-Based Clustering Algorithm, improves global protein representations, while a contextual prediction task fine-tunes local amino acid accuracy. Significantly, our model achieved state-of-the-art results in several downstream experiments, demonstrating the power of combining global and local methodologies to substantially boost protein representation quality.


PET Tracer Conversion among Brain PET via Variable Augmented Invertible Network

arXiv.org Artificial Intelligence

Positron emission tomography (PET) serves as an essential tool for diagnosis of encephalopathy and brain science research. However, it suffers from the limited choice of tracers. Nowadays, with the wide application of PET imaging in neuropsychiatric treatment, 6-18F-fluoro-3, 4-dihydroxy-L-phenylalanine (DOPA) has been found to be more effective than 18F-labeled fluorine-2-deoxyglucose (FDG) in the field. Nevertheless, due to the complexity of its preparation and other limitations, DOPA is far less widely used than FDG. To address this issue, a tracer conversion invertible neural network (TC-INN) for image projection is developed to map FDG images to DOPA images through deep learning. More diagnostic information is obtained by generating PET images from FDG to DOPA. Specifically, the proposed TC-INN consists of two separate phases, one for training traceable data, the other for rebuilding new data. The reference DOPA PET image is used as a learning target for the corresponding network during the training process of tracer conversion. Meanwhile, the invertible network iteratively estimates the resultant DOPA PET data and compares it to the reference DOPA PET data. Notably, the reversible model employs variable enhancement technique to achieve better power generation. Moreover, image registration needs to be performed before training due to the angular deviation of the acquired FDG and DOPA data information. Experimental results exhibited excellent generation capability in mapping between FDG and DOPA, suggesting that PET tracer conversion has great potential in the case of limited tracer applications.


DISC-FinLLM: A Chinese Financial Large Language Model based on Multiple Experts Fine-tuning

arXiv.org Artificial Intelligence

The financial industry presents unique challenges and opportunities for Natural Language Processing In this paper, we propose a comprehensive approach (NLP) models (Huang et al., 2020). Traditional to build Chinese financial LLMs and present financial NLP models have made progress DISC-FinLLM. Our method aims to enhance general in various tasks such as news sentiment analysis LLMs by equipping them with the skills to (Araci, 2019), financial event extraction (Zheng address typical needs for financial text generation et al., 2019; Yang et al., 2019), financial report and understanding, meaningful multi-turn conversations generation (Chapman et al., 2022), stock price prediction on financial topics, and plugin functionality (Chen et al., 2018) and financial text summarization to support financial modeling and knowledgeenhanced (La Quatra and Cagliero, 2020).


Synthetic CT Generation via Variant Invertible Network for All-digital Brain PET Attenuation Correction

arXiv.org Artificial Intelligence

Attenuation correction (AC) is essential for the generation of artifact-free and quantitatively accurate positron emission tomography (PET) images. However, AC of PET faces challenges including inter-scan motion and erroneous transformation of structural voxel-intensities to PET attenuation-correction factors. Nowadays, the problem of AC for quantitative PET have been solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT). Meanwhile, considering the feasibility of a deep learning approach for PET AC without anatomical imaging, this paper develops a PET AC method, which uses deep learning to generate continuously valued CT images from non-attenuation corrected PET images for AC on brain PET imaging. Specifically, an invertible network combined with the variable augmentation strategy that can achieve the bidirectional inference processes is proposed for synthetic CT generation (IVNAC). To evaluate the performance of the proposed algorithm, we conducted a comprehensive study on a total of 1440 data from 37 clinical patients using comparative algorithms (such as Cycle-GAN and Pix2pix). Perceptual analysis and quantitative evaluations illustrate that the invertible network for PET AC outperforms other existing AC models, which demonstrates the potential of the proposed method and the feasibility of achieving brain PET AC without CT.