Leung, Ho-fung
Context-aware Inductive Knowledge Graph Completion with Latent Type Constraints and Subgraph Reasoning
Li, Muzhi, Yang, Cehao, Xu, Chengjin, Song, Zixing, Jiang, Xuhui, Guo, Jian, Leung, Ho-fung, King, Irwin
Inductive knowledge graph completion (KGC) aims to predict missing triples with unseen entities. Recent works focus on modeling reasoning paths between the head and tail entity as direct supporting evidence. However, these methods depend heavily on the existence and quality of reasoning paths, which limits their general applicability in different scenarios. In addition, we observe that latent type constraints and neighboring facts inherent in KGs are also vital in inferring missing triples. To effectively utilize all useful information in KGs, we introduce CATS, a novel context-aware inductive KGC solution. With sufficient guidance from proper prompts and supervised fine-tuning, CATS activates the strong semantic understanding and reasoning capabilities of large language models to assess the existence of query triples, which consist of two modules. First, the type-aware reasoning module evaluates whether the candidate entity matches the latent entity type as required by the query relation. Then, the subgraph reasoning module selects relevant reasoning paths and neighboring facts, and evaluates their correlation to the query triple. Experiment results on three widely used datasets demonstrate that CATS significantly outperforms state-of-the-art methods in 16 out of 18 transductive, inductive, and few-shot settings with an average absolute MRR improvement of 7.2%.
Retrieval, Reasoning, Re-ranking: A Context-Enriched Framework for Knowledge Graph Completion
Li, Muzhi, Yang, Cehao, Xu, Chengjin, Jiang, Xuhui, Qi, Yiyan, Guo, Jian, Leung, Ho-fung, King, Irwin
The Knowledge Graph Completion~(KGC) task aims to infer the missing entity from an incomplete triple. Existing embedding-based methods rely solely on triples in the KG, which is vulnerable to specious relation patterns and long-tail entities. On the other hand, text-based methods struggle with the semantic gap between KG triples and natural language. Apart from triples, entity contexts (e.g., labels, descriptions, aliases) also play a significant role in augmenting KGs. To address these limitations, we propose KGR3, a context-enriched framework for KGC. KGR3 is composed of three modules. Firstly, the Retrieval module gathers supporting triples from the KG, collects plausible candidate answers from a base embedding model, and retrieves context for each related entity. Then, the Reasoning module employs a large language model to generate potential answers for each query triple. Finally, the Re-ranking module combines candidate answers from the two modules mentioned above, and fine-tunes an LLM to provide the best answer. Extensive experiments on widely used datasets demonstrate that KGR3 consistently improves various KGC methods. Specifically, the best variant of KGR3 achieves absolute Hits@1 improvements of 12.3% and 5.6% on the FB15k237 and WN18RR datasets.
An Online Learning Approach to Prompt-based Selection of Generative Models
Hu, Xiaoyan, Leung, Ho-fung, Farnia, Farzan
Selecting a sample generation scheme from multiple text-based generative models is typically addressed by choosing the model that maximizes an averaged evaluation score. However, this score-based selection overlooks the possibility that different models achieve the best generation performance for different types of text prompts. An online identification of the best generation model for various input prompts can reduce the costs associated with querying sub-optimal models. In this work, we explore the possibility of varying rankings of text-based generative models for different text prompts and propose an online learning framework to predict the best data generation model for a given input prompt. The proposed framework adapts the kernelized contextual bandit (CB) methodology to a CB setting with shared context variables across arms, utilizing the generated data to update a kernel-based function that predicts which model will achieve the highest score for unseen text prompts. Additionally, we apply random Fourier features (RFF) to the kernelized CB algorithm to accelerate the online learning process and establish a $\widetilde{\mathcal{O}}(\sqrt{T})$ regret bound for the proposed RFF-based CB algorithm over T iterations. Our numerical experiments on real and simulated text-to-image and image-to-text generative models show RFF-UCB performs successfully in identifying the best generation model across different sample types.
An Information Theoretic Approach to Interaction-Grounded Learning
Hu, Xiaoyan, Farnia, Farzan, Leung, Ho-fung
Reinforcement learning (RL) problems where the learner attempts to infer an unobserved reward from some feedback variables have been studied in several recent papers. The setting of Interaction-Grounded Learning (IGL) is an example of such feedback-based RL tasks where the learner optimizes the return by inferring latent binary rewards from the interaction with the environment. In the IGL setting, a relevant assumption used in the RL literature is that the feedback variable $Y$ is conditionally independent of the context-action $(X,A)$ given the latent reward $R$. In this work, we propose Variational Information-based IGL (VI-IGL) as an information-theoretic method to enforce the conditional independence assumption in the IGL-based RL problem. The VI-IGL framework learns a reward decoder using an information-based objective based on the conditional mutual information (MI) between $(X,A)$ and $Y$. To estimate and optimize the information-based terms for the continuous random variables in the RL problem, VI-IGL leverages the variational representation of mutual information to obtain a min-max optimization problem. Also, we extend the VI-IGL framework to general $f$-Information measures leading to the generalized $f$-VI-IGL framework for the IGL-based RL problems. We present numerical results on several reinforcement learning settings indicating an improved performance compared to the existing IGL-based RL algorithm.
Provably Efficient CVaR RL in Low-rank MDPs
Zhao, Yulai, Zhan, Wenhao, Hu, Xiaoyan, Leung, Ho-fung, Farnia, Farzan, Sun, Wen, Lee, Jason D.
We study risk-sensitive Reinforcement Learning (RL), where we aim to maximize the Conditional Value at Risk (CVaR) with a fixed risk tolerance $\tau$. Prior theoretical work studying risk-sensitive RL focuses on the tabular Markov Decision Processes (MDPs) setting. To extend CVaR RL to settings where state space is large, function approximation must be deployed. We study CVaR RL in low-rank MDPs with nonlinear function approximation. Low-rank MDPs assume the underlying transition kernel admits a low-rank decomposition, but unlike prior linear models, low-rank MDPs do not assume the feature or state-action representation is known. We propose a novel Upper Confidence Bound (UCB) bonus-driven algorithm to carefully balance the interplay between exploration, exploitation, and representation learning in CVaR RL. We prove that our algorithm achieves a sample complexity of $\tilde{O}\left(\frac{H^7 A^2 d^4}{\tau^2 \epsilon^2}\right)$ to yield an $\epsilon$-optimal CVaR, where $H$ is the length of each episode, $A$ is the capacity of action space, and $d$ is the dimension of representations. Computational-wise, we design a novel discretized Least-Squares Value Iteration (LSVI) algorithm for the CVaR objective as the planning oracle and show that we can find the near-optimal policy in a polynomial running time with a Maximum Likelihood Estimation oracle. To our knowledge, this is the first provably efficient CVaR RL algorithm in low-rank MDPs.
Exploiting Semantic Epsilon Greedy Exploration Strategy in Multi-Agent Reinforcement Learning
Tse, Hon Tik, Leung, Ho-fung
Multi-agent reinforcement learning (MARL) can model many real world applications. However, many MARL approaches rely on epsilon greedy for exploration, which may discourage visiting advantageous states in hard scenarios. In this paper, we propose a new approach QMIX(SEG) for tackling MARL. It makes use of the value function factorization method QMIX to train per-agent policies and a novel Semantic Epsilon Greedy (SEG) exploration strategy. SEG is a simple extension to the conventional epsilon greedy exploration strategy, yet it is experimentally shown to greatly improve the performance of MARL. We first cluster actions into groups of actions with similar effects and then use the groups in a bi-level epsilon greedy exploration hierarchy for action selection. We argue that SEG facilitates semantic exploration by exploring in the space of groups of actions, which have richer semantic meanings than atomic actions. Experiments show that QMIX(SEG) largely outperforms QMIX and leads to strong performance competitive with current state-of-the-art MARL approaches on the StarCraft Multi-Agent Challenge (SMAC) benchmark.
The Evolutionary Dynamics of Independent Learning Agents in Population Games
Hu, Shuyue, Leung, Chin-Wing, Leung, Ho-fung, Soh, Harold
Understanding the evolutionary dynamics of reinforcement learning under multi-agent settings has long remained an open problem. While previous works primarily focus on 2-player games, we consider population games, which model the strategic interactions of a large population comprising small and anonymous agents. This paper presents a formal relation between stochastic processes and the dynamics of independent learning agents who reason based on the reward signals. Using a master equation approach, we provide a novel unified framework for characterising population dynamics via a single partial differential equation (Theorem 1). Through a case study involving Cross learning agents, we illustrate that Theorem 1 allows us to identify qualitatively different evolutionary dynamics, to analyse steady states, and to gain insights into the expected behaviour of a population. In addition, we present extensive experimental results validating that Theorem 1 holds for a variety of learning methods and population games.
Reinforcement Social Learning of Coordination in Networked Cooperative Multiagent Systems
Hao, Jianye (Massachusetts Institute of Technology) | Huang, Dongping (South China University of Technology) | Cai, Yi (South China University of Technology) | Leung, Ho-fung (The Chinese University of Hong Kong)
The problem of coordination in cooperative multiagent systems has been widely studied in the literature. In practical complex environments, the interactions among agents are usually regulated by their underlying network topology, which, however, has not been taken into consideration in previous work. To this end, we firstly investigate the multiagent coordination problems in cooperative environments under the networked social learning framework focusing on two representative topologies: the small-world and the scale-free network. We consider a population of agents where each agent interacts with another agent randomly chosen from its neighborhood in each round. Each agent learns its policy through repeated interactions with its neighbors via social learning. It is not clear a priori if all agents can learn a consistent optimal coordination policy and what kind of impact different topology parameters could have on the learning performance of agents. We distinguish two types of learners: individual action learner and joint action learner. The learning performances of both learners are evaluated extensively in different cooperative games, and the influence of different factors on the learning performance of agents is investigated and analyzed as well.
The Dynamics of Reinforcement Social Learning in Cooperative Multiagent Systems
Hao, Jianye (The Chinese University of Hong Kong) | Leung, Ho-fung (The Chinese University of Hong Kong)
Coordination in cooperative multiagent systems is an important problem in multiagent learning literature. In practical complex environments, the interactions between agents can be sparse, and each agent's interacting partners may change frequently and randomly. To this end, we investigate the multiagent coordination problems in cooperative environments under the social learning framework. We consider a large population of agents where each agent interacts with another agent randomly chosen from the population in each round. Each agent learns its policy through repeated interactions with the rest of agents via social learning. It is not clear a priori if all agents can learn a consistent optimal coordination policy in such a situation. We distinguish two types of learners: individual action learner and joint action learner. The learning performance of both learners are evaluated under a number of challenging cooperative games, and the influence of the information sharing degree on the learning performance is investigated as well.