Goto

Collaborating Authors

 Lerman, Kristina


Polarized Online Discourse on Abortion: Frames and Hostile Expressions among Liberals and Conservatives

arXiv.org Artificial Intelligence

Abortion has been one of the most divisive issues in the United States. Yet, missing is comprehensive longitudinal evidence on how political divides on abortion are reflected in public discourse over time, on a national scale, and in response to key events before and after the overturn of Roe v Wade. We analyze a corpus of over 3.5M tweets related to abortion over the span of one year (January 2022 to January 2023) from over 1.1M users. We estimate users' ideology and rely on state-of-the-art transformer-based classifiers to identify expressions of hostility and extract five prominent frames surrounding abortion. We use those data to examine (a) how prevalent were expressions of hostility (i.e., anger, toxic speech, insults, obscenities, and hate speech), (b) what frames liberals and conservatives used to articulate their positions on abortion, and (c) the prevalence of hostile expressions in liberals and conservative discussions of these frames. We show that liberals and conservatives largely mirrored each other's use of hostile expressions: as liberals used more hostile rhetoric, so did conservatives, especially in response to key events. In addition, the two groups used distinct frames and discussed them in vastly distinct contexts, suggesting that liberals and conservatives have differing perspectives on abortion. Lastly, frames favored by one side provoked hostile reactions from the other: liberals use more hostile expressions when addressing religion, fetal personhood, and exceptions to abortion bans, whereas conservatives use more hostile language when addressing bodily autonomy and women's health. This signals disrespect and derogation, which may further preclude understanding and exacerbate polarization.


Characterizing Network Structure of Anti-Trans Actors on TikTok

arXiv.org Artificial Intelligence

The recent proliferation of short form video social media sites such as TikTok has been effectively utilized for increased visibility, communication, and community connection amongst trans/nonbinary creators online. However, these same platforms have also been exploited by right-wing actors targeting trans/nonbinary people, enabling such anti-trans actors to efficiently spread hate speech and propaganda. Given these divergent groups, what are the differences in network structure between anti-trans and pro-trans communities on TikTok, and to what extent do they amplify the effects of anti-trans content? In this paper, we collect a sample of TikTok videos containing pro and anti-trans content, and develop a taxonomy of trans related sentiment to enable the classification of content on TikTok, and ultimately analyze the reply network structures of pro-trans and anti-trans communities. In order to accomplish this, we worked with hired expert data annotators from the trans/nonbinary community in order to generate a sample of highly accurately labeled data. From this subset, we utilized a novel classification pipeline leveraging Retrieval-Augmented Generation (RAG) with annotated examples and taxonomy definitions to classify content into pro-trans, anti-trans, or neutral categories. We find that incorporating our taxonomy and its logics into our classification engine results in improved ability to differentiate trans related content, and that Results from network analysis indicate many interactions between posters of pro-trans and anti-trans content exist, further demonstrating targeting of trans individuals, and demonstrating the need for better content moderation tools


In-Group Love, Out-Group Hate: A Framework to Measure Affective Polarization via Contentious Online Discussions

arXiv.org Artificial Intelligence

Affective polarization, the emotional divide between ideological groups marked by in-group love and out-group hate, has intensified in the United States, driving contentious issues like masking and lockdowns during the COVID-19 pandemic. Despite its societal impact, existing models of opinion change fail to account for emotional dynamics nor offer methods to quantify affective polarization robustly and in real-time. In this paper, we introduce a discrete choice model that captures decision-making within affectively polarized social networks and propose a statistical inference method estimate key parameters -- in-group love and out-group hate -- from social media data. Through empirical validation from online discussions about the COVID-19 pandemic, we demonstrate that our approach accurately captures real-world polarization dynamics and explains the rapid emergence of a partisan gap in attitudes towards masking and lockdowns. This framework allows for tracking affective polarization across contentious issues has broad implications for fostering constructive online dialogues in digital spaces.


Assessing the Impact of Conspiracy Theories Using Large Language Models

arXiv.org Artificial Intelligence

Measuring the relative impact of CTs is important for prioritizing responses and allocating resources effectively, especially during crises. However, assessing the actual impact of CTs on the public poses unique challenges. It requires not only the collection of CT-specific knowledge but also diverse information from social, psychological, and cultural dimensions. Recent advancements in large language models (LLMs) suggest their potential utility in this context, not only due to their extensive knowledge from large training corpora but also because they can be harnessed for complex reasoning. In this work, we develop datasets of popular CTs with human-annotated impacts. Borrowing insights from human impact assessment processes, we then design tailored strategies to leverage LLMs for performing human-like CT impact assessments. Through rigorous experiments, we textit{discover that an impact assessment mode using multi-step reasoning to analyze more CT-related evidence critically produces accurate results; and most LLMs demonstrate strong bias, such as assigning higher impacts to CTs presented earlier in the prompt, while generating less accurate impact assessments for emotionally charged and verbose CTs.


Estimating Causal Effects of Text Interventions Leveraging LLMs

arXiv.org Artificial Intelligence

Quantifying the effect of textual interventions in social systems, such as reducing anger in social media posts to see its impact on engagement, poses significant challenges. Direct interventions on real-world systems are often infeasible, necessitating reliance on observational data. Traditional causal inference methods, typically designed for binary or discrete treatments, are inadequate for handling the complex, high-dimensional nature of textual data. This paper addresses these challenges by proposing a novel approach, CausalDANN, to estimate causal effects using text transformations facilitated by large language models (LLMs). Unlike existing methods, our approach accommodates arbitrary textual interventions and leverages text-level classifiers with domain adaptation ability to produce robust effect estimates against domain shifts, even when only the control group is observed. This flexibility in handling various text interventions is a key advancement in causal estimation for textual data, offering opportunities to better understand human behaviors and develop effective policies within social systems.


Aggregation Artifacts in Subjective Tasks Collapse Large Language Models' Posteriors

arXiv.org Artificial Intelligence

In-context Learning (ICL) has become the primary method for performing natural language tasks with Large Language Models (LLMs). The knowledge acquired during pre-training is crucial for this few-shot capability, providing the model with task priors. However, recent studies have shown that ICL predominantly relies on retrieving task priors rather than "learning" to perform tasks. This limitation is particularly evident in complex subjective domains such as emotion and morality, where priors significantly influence posterior predictions. In this work, we examine whether this is the result of the aggregation used in corresponding datasets, where trying to combine low-agreement, disparate annotations might lead to annotation artifacts that create detrimental noise in the prompt. Moreover, we evaluate the posterior bias towards certain annotators by grounding our study in appropriate, quantitative measures of LLM priors. Our results indicate that aggregation is a confounding factor in the modeling of subjective tasks, and advocate focusing on modeling individuals instead. However, aggregation does not explain the entire gap between ICL and the state of the art, meaning other factors in such tasks also account for the observed phenomena. Finally, by rigorously studying annotator-level labels, we find that it is possible for minority annotators to both better align with LLMs and have their perspectives further amplified.


Fear and Loathing on the Frontline: Decoding the Language of Othering by Russia-Ukraine War Bloggers

arXiv.org Artificial Intelligence

Othering, the act of portraying outgroups as fundamentally different from the ingroup, often escalates into framing them as existential threats--fueling intergroup conflict and justifying exclusion and violence. These dynamics are alarmingly pervasive, spanning from the extreme historical examples of genocides against minorities in Germany and Rwanda to the ongoing violence and rhetoric targeting migrants in the US and Europe. While concepts like hate speech and fear speech have been explored in existing literature, they capture only part of this broader and more nuanced dynamic which can often be harder to detect, particularly in online speech and propaganda. To address this challenge, we introduce a novel computational framework that leverages large language models (LLMs) to quantify othering across diverse contexts, extending beyond traditional linguistic indicators of hostility. Applying the model to real-world data from Telegram war bloggers and political discussions on Gab reveals how othering escalates during conflicts, interacts with moral language, and garners significant attention, particularly during periods of crisis. Our framework, designed to offer deeper insights into othering dynamics, combines with a rapid adaptation process to provide essential tools for mitigating othering's adverse impacts on social cohesion.


Improving and Assessing the Fidelity of Large Language Models Alignment to Online Communities

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown promise in representing individuals and communities, offering new ways to study complex social dynamics. However, effectively aligning LLMs with specific human groups and systematically assessing the fidelity of the alignment remains a challenge. This paper presents a robust framework for aligning LLMs with online communities via instruction-tuning and comprehensively evaluating alignment across various aspects of language, including authenticity, emotional tone, toxicity, and harm. We demonstrate the utility of our approach by applying it to online communities centered on dieting and body image. We administer an eating disorder psychometric test to the aligned LLMs to reveal unhealthy beliefs and successfully differentiate communities with varying levels of eating disorder risk. Our results highlight the potential of LLMs in automated moderation and broader applications in public health and social science research.


Feelings about Bodies: Emotions on Diet and Fitness Forums Reveal Gendered Stereotypes and Body Image Concerns

arXiv.org Artificial Intelligence

The gendered expectations about ideal body types can lead to body image concerns, dissatisfaction, and in extreme cases, disordered eating and other psychopathologies across the gender spectrum. While research has focused on pro-anorexia online communities that glorify the 'thin ideal', less attention has been given to the broader spectrum of body image concerns or how emerging disorders like muscle dysmorphia ('bigorexia') present in online discussions. To address these gaps, we analyze 46 Reddit discussion forums related to diet, fitness, and associated mental health challenges. Using membership structure analysis and transformer-based language models, we project these communities along gender and body ideal axes, revealing complex interactions between gender, body ideals, and emotional expression. Our findings show that feminine-oriented communities generally express more negative emotions, particularly in thinness-promoting forums. Conversely, communities focused on the muscular ideal exhibit less negativity, regardless of gender orientation. We also uncover a gendered pattern in emotional indicators of mental health challenges, with communities discussing serious issues aligning more closely with thinness-oriented, predominantly feminine-leaning communities. By revealing the gendered emotional dynamics of online communities, our findings can inform the development of more effective content moderation approaches that facilitate supportive interactions, while minimizing exposure to potentially harmful content.


Harmful Speech Detection by Language Models Exhibits Gender-Queer Dialect Bias

arXiv.org Artificial Intelligence

Content moderation on social media platforms shapes the dynamics of online discourse, influencing whose voices are amplified and whose are suppressed. Recent studies have raised concerns about the fairness of content moderation practices, particularly for aggressively flagging posts from transgender and non-binary individuals as toxic. In this study, we investigate the presence of bias in harmful speech classification of gender-queer dialect online, focusing specifically on the treatment of reclaimed slurs. We introduce a novel dataset, QueerReclaimLex, based on 109 curated templates exemplifying non-derogatory uses of LGBTQ+ slurs. Dataset instances are scored by gender-queer annotators for potential harm depending on additional context about speaker identity. We systematically evaluate the performance of five off-the-shelf language models in assessing the harm of these texts and explore the effectiveness of chain-of-thought prompting to teach large language models (LLMs) to leverage author identity context. We reveal a tendency for these models to inaccurately flag texts authored by gender-queer individuals as harmful. Strikingly, across all LLMs the performance is poorest for texts that show signs of being written by individuals targeted by the featured slur (F1 <= 0.24). We highlight an urgent need for fairness and inclusivity in content moderation systems. By uncovering these biases, this work aims to inform the development of more equitable content moderation practices and contribute to the creation of inclusive online spaces for all users.