Goto

Collaborating Authors

 Lee, O-Joun


Halal or Not: Knowledge Graph Completion for Predicting Cultural Appropriateness of Daily Products

arXiv.org Artificial Intelligence

The growing demand for halal cosmetic products has exposed significant challenges, especially in Muslim-majority countries. Recently, various machine learning-based strategies, e.g., image-based methods, have shown remarkable success in predicting the halal status of cosmetics. However, these methods mainly focus on analyzing the discrete and specific ingredients within separate cosmetics, which ignore the high-order and complex relations between cosmetics and ingredients. To address this problem, we propose a halal cosmetic recommendation framework, namely HaCKG, that leverages a knowledge graph of cosmetics and their ingredients to explicitly model and capture the relationships between cosmetics and their components. By representing cosmetics and ingredients as entities within the knowledge graph, HaCKG effectively learns the high-order and complex relations between entities, offering a robust method for predicting halal status. Specifically, we first construct a cosmetic knowledge graph representing the relations between various cosmetics, ingredients, and their properties. We then propose a pre-trained relational graph attention network model with residual connections to learn the structural relation between entities in the knowledge graph. The pre-trained model is then fine-tuned on downstream cosmetic data to predict halal status. Extensive experiments on the cosmetic dataset over halal prediction tasks demonstrate the superiority of our model over state-of-the-art baselines.


Pre-training Graph Neural Networks on Molecules by Using Subgraph-Conditioned Graph Information Bottleneck

arXiv.org Artificial Intelligence

This study aims to build a pre-trained Graph Neural Network (GNN) model on molecules without human annotations or prior knowledge. Although various attempts have been proposed to overcome limitations in acquiring labeled molecules, the previous pre-training methods still rely on semantic subgraphs, i.e., functional groups. Only focusing on the functional groups could overlook the graph-level distinctions. The key challenge to build a pre-trained GNN on molecules is how to (1) generate well-distinguished graph-level representations and (2) automatically discover the functional groups without prior knowledge. To solve it, we propose a novel Subgraph-conditioned Graph Information Bottleneck, named S-CGIB, for pre-training GNNs to recognize core subgraphs (graph cores) and significant subgraphs. The main idea is that the graph cores contain compressed and sufficient information that could generate well-distinguished graph-level representations and reconstruct the input graph conditioned on significant subgraphs across molecules under the S-CGIB principle. To discover significant subgraphs without prior knowledge about functional groups, we propose generating a set of functional group candidates, i.e., ego networks, and using an attention-based interaction between the graph core and the candidates. Despite being identified from self-supervised learning, our learned subgraphs match the real-world functional groups. Extensive experiments on molecule datasets across various domains demonstrate the superiority of S-CGIB.


Explainable Graph Neural Networks for Observation Impact Analysis in Atmospheric State Estimation

arXiv.org Artificial Intelligence

Weather forecasting, a critical component in industries like transportation and manufacturing, relies heavily on Numerical Weather Prediction (NWP) systems, which are based on 3D physical models and dynamical equations [1, 2]. For NWP systems to predict future atmospheric states effectively, they require accurate current atmospheric states as initial values. This necessity underscores the importance of a data assimilation (DA) system, which approximates the true atmospheric states by merging observations with prediction results from dynamical models [3]. The integration of a wide range of observations, from sources like aircraft, radiosondes, and satellites, is crucial for enhancing the DA system's accuracy [4]. Traditional methods to assess the impact of observations on weather forecasts include forecast sensitivity to observation (FSO) and its variations, such as ensemble FSO and hybrid FSO [2, 5, 6].


CloudNine: Analyzing Meteorological Observation Impact on Weather Prediction Using Explainable Graph Neural Networks

arXiv.org Artificial Intelligence

The impact of meteorological observations on weather forecasting varies with sensor type, location, time, and other environmental factors. Thus, quantitative analysis of observation impacts is crucial for effective and efficient development of weather forecasting systems. However, the existing impact analysis methods are difficult to be widely applied due to their high dependencies on specific forecasting systems. Also, they cannot provide observation impacts at multiple spatio-temporal scales, only global impacts of observation types. To address these issues, we present a novel system called ``CloudNine,'' which allows analysis of individual observations' impacts on specific predictions based on explainable graph neural networks (XGNNs). Combining an XGNN-based atmospheric state estimation model with a numerical weather prediction model, we provide a web application to search for observations in the 3D space of the Earth system and to visualize the impact of individual observations on predictions in specific spatial regions and time periods.


A Survey on Structure-Preserving Graph Transformers

arXiv.org Artificial Intelligence

The transformer architecture has shown remarkable success in various domains, such as natural language processing and computer vision. When it comes to graph learning, transformers are required not only to capture the interactions between pairs of nodes but also to preserve graph structures connoting the underlying relations and proximity between them, showing the expressive power to capture different graph structures. Accordingly, various structure-preserving graph transformers have been proposed and widely used for various tasks, such as graph-level tasks in bioinformatics and chemoinformatics. However, strategies related to graph structure preservation have not been well organized and systematized in the literature. In this paper, we provide a comprehensive overview of structure-preserving graph transformers and generalize these methods from the perspective of their design objective. First, we divide strategies into four main groups: node feature modulation, context node sampling, graph rewriting, and transformer architecture improvements. We then further divide the strategies according to the coverage and goals of graph structure preservation. Furthermore, we also discuss challenges and future directions for graph transformer models to preserve the graph structure and understand the nature of graphs.


Mitigating Degree Biases in Message Passing Mechanism by Utilizing Community Structures

arXiv.org Artificial Intelligence

This study utilizes community structures to address node degree biases in message-passing (MP) via learnable graph augmentations and novel graph transformers. Recent augmentation-based methods showed that MP neural networks often perform poorly on low-degree nodes, leading to degree biases due to a lack of messages reaching low-degree nodes. Despite their success, most methods use heuristic or uniform random augmentations, which are non-differentiable and may not always generate valuable edges for learning representations. In this paper, we propose Community-aware Graph Transformers, namely CGT, to learn degree-unbiased representations based on learnable augmentations and graph transformers by extracting within community structures. We first design a learnable graph augmentation to generate more within-community edges connecting low-degree nodes through edge perturbation. Second, we propose an improved self-attention to learn underlying proximity and the roles of nodes within the community. Third, we propose a self-supervised learning task that could learn the representations to preserve the global graph structure and regularize the graph augmentations. Extensive experiments on various benchmark datasets showed CGT outperforms state-of-the-art baselines and significantly improves the node degree biases. The source code is available at https://github.com/NSLab-CUK/Community-aware-Graph-Transformer.


Companion Animal Disease Diagnostics based on Literal-aware Medical Knowledge Graph Representation Learning

arXiv.org Artificial Intelligence

Knowledge graph (KG) embedding has been used to benefit the diagnosis of animal diseases by analyzing electronic medical records (EMRs), such as notes and veterinary records. However, learning representations to capture entities and relations with literal information in KGs is challenging as the KGs show heterogeneous properties and various types of literal information. Meanwhile, the existing methods mostly aim to preserve graph structures surrounding target nodes without considering different types of literals, which could also carry significant information. In this paper, we propose a knowledge graph embedding model for the efficient diagnosis of animal diseases, which could learn various types of literal information and graph structure and fuse them into unified representations, namely LiteralKG. Specifically, we construct a knowledge graph that is built from EMRs along with literal information collected from various animal hospitals. We then fuse different types of entities and node feature information into unified vector representations through gate networks. Finally, we propose a self-supervised learning task to learn graph structure in pretext tasks and then towards various downstream tasks. Experimental results on link prediction tasks demonstrate that our model outperforms the baselines that consist of state-of-the-art models. The source code is available at https://github.com/NSLab-CUK/LiteralKG.


Transitivity-Preserving Graph Representation Learning for Bridging Local Connectivity and Role-based Similarity

arXiv.org Artificial Intelligence

Graph representation learning (GRL) methods, such as graph neural networks and graph transformer models, have been successfully used to analyze graph-structured data, mainly focusing on node classification and link prediction tasks. However, the existing studies mostly only consider local connectivity while ignoring long-range connectivity and the roles of nodes. In this paper, we propose Unified Graph Transformer Networks (UGT) that effectively integrate local and global structural information into fixed-length vector representations. First, UGT learns local structure by identifying the local substructures and aggregating features of the $k$-hop neighborhoods of each node. Second, we construct virtual edges, bridging distant nodes with structural similarity to capture the long-range dependencies. Third, UGT learns unified representations through self-attention, encoding structural distance and $p$-step transition probability between node pairs. Furthermore, we propose a self-supervised learning task that effectively learns transition probability to fuse local and global structural features, which could then be transferred to other downstream tasks. Experimental results on real-world benchmark datasets over various downstream tasks showed that UGT significantly outperformed baselines that consist of state-of-the-art models. In addition, UGT reaches the expressive power of the third-order Weisfeiler-Lehman isomorphism test (3d-WL) in distinguishing non-isomorphic graph pairs. The source code is available at https://github.com/NSLab-CUK/Unified-Graph-Transformer.


Connector 0.5: A unified framework for graph representation learning

arXiv.org Artificial Intelligence

Graphs are a universal language representing and visualizing relationships and connections between different entities or data points [1, 2, 3]. Graph structure widely exists in various practical application systems. For example, relationships between online users in social media could form a large social graph network. Another example is the recommendation system, where users' behaviours such as purchasing, browsing and rating products can be abstracted into an interaction graph between users and products. Graph representation learning methods aim to learn nodes and edges of graphs as low-dimensional vectors, mainly in Euclidean space [4]. These representations could then be used directly to improve various downstream tasks, such as node classification, link prediction, and visualization tasks. However, large amounts of data are still represented by different types of graphs, including homogeneous, heterogeneous, knowledge, and signed graphs [5]. Over the years, various graph embedding models have been proposed to transform graph entities into low-dimensional vectors [1, 2, 3, 6].