Goto

Collaborating Authors

 Lee, Namkyeong


RAG-Enhanced Collaborative LLM Agents for Drug Discovery

arXiv.org Artificial Intelligence

Recent advances in large language models (LLMs) have shown great potential to accelerate drug discovery. However, the specialized nature of biochemical data often necessitates costly domain-specific fine-tuning, posing critical challenges. First, it hinders the application of more flexible general-purpose LLMs in cutting-edge drug discovery tasks. More importantly, it impedes the rapid integration of the vast amounts of scientific data continuously generated through experiments and research. To investigate these challenges, we propose CLADD, a retrieval-augmented generation (RAG)-empowered agentic system tailored to drug discovery tasks. Through the collaboration of multiple LLM agents, CLADD dynamically retrieves information from biomedical knowledge bases, contextualizes query molecules, and integrates relevant evidence to generate responses -- all without the need for domain-specific fine-tuning. Crucially, we tackle key obstacles in applying RAG workflows to biochemical data, including data heterogeneity, ambiguity, and multi-source integration. We demonstrate the flexibility and effectiveness of this framework across a variety of drug discovery tasks, showing that it outperforms general-purpose and domain-specific LLMs as well as traditional deep learning approaches.


Subgraph Federated Learning for Local Generalization

arXiv.org Artificial Intelligence

Federated Learning (FL) on graphs enables collaborative model training to enhance performance without compromising the privacy of each client. However, existing methods often overlook the mutable nature of graph data, which frequently introduces new nodes and leads to shifts in label distribution. Since they focus solely on performing well on each client's local data, they are prone to overfitting to their local distributions (i.e., local overfitting), which hinders their ability to generalize to unseen data with diverse label distributions. In contrast, our proposed method, FedLoG, effectively tackles this issue by mitigating local overfitting. Our model generates global synthetic data by condensing the reliable information from each class representation and its structural information across clients. Using these synthetic data as a training set, we alleviate the local overfitting problem by adaptively generalizing the absent knowledge within each local dataset. This enhances the generalization capabilities of local models, enabling them to handle unseen data effectively. Our model outperforms baselines in our proposed experimental settings, which are designed to measure generalization power to unseen data in practical scenarios. Our code is available at https://github.com/sung-won-kim/FedLoG


3D Interaction Geometric Pre-training for Molecular Relational Learning

arXiv.org Artificial Intelligence

Molecular relational learning (MRL) focuses on understanding the interaction dynamics between molecules and has gained significant attention from researchers thanks to its diverse applications [20]. For instance, understanding how a medication dissolves in different solvents (medication-solvent interaction) is vital in pharmacy [30, 26, 3], while predicting the optical and photophysical properties of chromophores in various solvents (chromophore-solvent interaction) is essential for material discovery [16]. Because of the expensive time and financial costs associated with conducting wet lab experiments to test the interaction behavior of all possible molecular pairs [31], machine learning methods have been quickly embraced for MRL. Despite recent advancements in MRL, previous works tend to ignore molecules' 3D geometric information and instead focus solely on their 2D topological structures. However, in molecular science, the 3D geometric information of molecules (Figure 1 (a)) is crucial for understanding and predicting molecular behavior across various contexts, ranging from physical properties [1] to biological functions [10, 46]. This is particularly important in MRL, as geometric information plays a key role in molecular interactions by determining how molecules recognize, interact, and bind with one another in their interaction environment [34]. In traditional molecular dynamics simulations, explicit solvent models, which directly consider the detailed environment of molecular interaction, have demonstrated superior performance compared to implicit solvent models, which simplify the solvent as a continuous medium, highlighting the significance of explicitly modeling the complex geometries of interaction environments [47]. However, acquiring stereochemical structures of molecules is often very costly, resulting in limited availability of such 3D geometric information for downstream tasks [23].


Retrieval-Retro: Retrieval-based Inorganic Retrosynthesis with Expert Knowledge

arXiv.org Artificial Intelligence

While inorganic retrosynthesis planning is essential in the field of chemical science, the application of machine learning in this area has been notably less explored compared to organic retrosynthesis planning. In this paper, we propose Retrieval-Retro for inorganic retrosynthesis planning, which implicitly extracts the precursor information of reference materials that are retrieved from the knowledge base regarding domain expertise in the field. Specifically, instead of directly employing the precursor information of reference materials, we propose implicitly extracting it with various attention layers, which enables the model to learn novel synthesis recipes more effectively. Moreover, during retrieval, we consider the thermodynamic relationship between target material and precursors, which is essential domain expertise in identifying the most probable precursor set among various options. Extensive experiments demonstrate the superiority of Retrieval-Retro in retrosynthesis planning, especially in discovering novel synthesis recipes, which is crucial for materials discovery. The source code for Retrieval-Retro is available at https://github.com/HeewoongNoh/Retrieval-Retro.


Protein-Mamba: Biological Mamba Models for Protein Function Prediction

arXiv.org Artificial Intelligence

Protein function prediction is a pivotal task in drug discovery, significantly impacting the development of effective and safe therapeutics. Traditional machine learning models often struggle with the complexity and variability inherent in predicting protein functions, necessitating more sophisticated approaches. In this work, we introduce Protein-Mamba, a novel two-stage model that leverages both self-supervised learning and fine-tuning to improve protein function prediction. The pre-training stage allows the model to capture general chemical structures and relationships from large, unlabeled datasets, while the fine-tuning stage refines these insights using specific labeled datasets, resulting in superior prediction performance. Our extensive experiments demonstrate that Protein-Mamba achieves competitive performance, compared with a couple of state-of-the-art methods across a range of protein function datasets. This model's ability to effectively utilize both unlabeled and labeled data highlights the potential of self-supervised learning in advancing protein function prediction and offers a promising direction for future research in drug discovery.


Molecule Language Model with Augmented Pairs and Expertise Transfer

arXiv.org Artificial Intelligence

Understanding the molecules and their textual descriptions via molecule language models (MoLM) recently got a surge of interest among researchers. However, unique challenges exist in the field of MoLM due to 1) a limited amount of molecule-text paired data and 2) missing expertise that occurred due to the specialized areas of focus among the experts. To this end, we propose AMOLE, which 1) augments molecule-text pairs with structural similarity preserving loss, and 2) transfers the expertise between the molecules. Extensive experiments on various downstream tasks demonstrate the superiority of AMOLE in comprehending molecules and their descriptions, highlighting its potential for application in real-world drug discovery.


Density of States Prediction of Crystalline Materials via Prompt-guided Multi-Modal Transformer

arXiv.org Artificial Intelligence

The density of states (DOS) is a spectral property of crystalline materials, which provides fundamental insights into various characteristics of the materials. While previous works mainly focus on obtaining high-quality representations of crystalline materials for DOS prediction, we focus on predicting the DOS from the obtained representations by reflecting the nature of DOS: DOS determines the general distribution of states as a function of energy. That is, DOS is not solely determined by the crystalline material but also by the energy levels, which has been neglected in previous works. In this paper, we propose to integrate heterogeneous information obtained from the crystalline materials and the energies via a multi-modal transformer, thereby modeling the complex relationships between the atoms in the crystalline materials and various energy levels for DOS prediction. Moreover, we propose to utilize prompts to guide the model to learn the crystal structural system-specific interactions between crystalline materials and energies. Extensive experiments on two types of DOS, i.e., Phonon DOS and Electron DOS, with various real-world scenarios demonstrate the superiority of DOSTransformer.


Stoichiometry Representation Learning with Polymorphic Crystal Structures

arXiv.org Artificial Intelligence

Despite the recent success of machine learning (ML) in materials science, its success heavily relies on the structural description of crystal, which is itself computationally demanding and occasionally unattainable. Stoichiometry descriptors can be an alternative approach, which reveals the ratio between elements involved to form a certain compound without any structural information. However, it is not trivial to learn the representations of stoichiometry due to the nature of materials science called polymorphism, i.e., a single stoichiometry can exist in multiple structural forms due to the flexibility of atomic arrangements, inducing uncertainties in representation. To this end, we propose PolySRL, which learns the probabilistic representation of stoichiometry by utilizing the readily available structural information, whose uncertainty reveals the polymorphic structures of stoichiometry. Extensive experiments on sixteen datasets demonstrate the superiority of PolySRL, and analysis of uncertainties shed light on the applicability of PolySRL in real-world material discovery.


Task Relation-aware Continual User Representation Learning

arXiv.org Artificial Intelligence

User modeling, which learns to represent users into a low-dimensional representation space based on their past behaviors, got a surge of interest from the industry for providing personalized services to users. Previous efforts in user modeling mainly focus on learning a task-specific user representation that is designed for a single task. However, since learning task-specific user representations for every task is infeasible, recent studies introduce the concept of universal user representation, which is a more generalized representation of a user that is relevant to a variety of tasks. Despite their effectiveness, existing approaches for learning universal user representations are impractical in real-world applications due to the data requirement, catastrophic forgetting and the limited learning capability for continually added tasks. In this paper, we propose a novel continual user representation learning method, called TERACON, whose learning capability is not limited as the number of learned tasks increases while capturing the relationship between the tasks. The main idea is to introduce an embedding for each task, i.e., task embedding, which is utilized to generate task-specific soft masks that not only allow the entire model parameters to be updated until the end of training sequence, but also facilitate the relationship between the tasks to be captured. Moreover, we introduce a novel knowledge retention module with pseudo-labeling strategy that successfully alleviates the long-standing problem of continual learning, i.e., catastrophic forgetting. Extensive experiments on public and proprietary real-world datasets demonstrate the superiority and practicality of TERACON. Our code is available at https://github.com/Sein-Kim/TERACON.


Shift-Robust Molecular Relational Learning with Causal Substructure

arXiv.org Artificial Intelligence

Recently, molecular relational learning, whose goal is to predict the interaction behavior between molecular pairs, got a surge of interest in molecular sciences due to its wide range of applications. In this work, we propose CMRL that is robust to the distributional shift in molecular relational learning by detecting the core substructure that is causally related to chemical reactions. To do so, we first assume a causal relationship based on the domain knowledge of molecular sciences and construct a structural causal model (SCM) that reveals the relationship between variables. Based on the SCM, we introduce a novel conditional intervention framework whose intervention is conditioned on the paired molecule. With the conditional intervention framework, our model successfully learns from the causal substructure and alleviates the confounding effect of shortcut substructures that are spuriously correlated to chemical reactions. Extensive experiments on various tasks with real-world and synthetic datasets demonstrate the superiority of CMRL over state-of-the-art baseline models. Our code is available at https://github.com/Namkyeong/CMRL.