Krieger, Axel
From Monocular Vision to Autonomous Action: Guiding Tumor Resection via 3D Reconstruction
Acar, Ayberk, Smith, Mariana, Al-Zogbi, Lidia, Watts, Tanner, Li, Fangjie, Li, Hao, Yilmaz, Nural, Scheikl, Paul Maria, d'Almeida, Jesse F., Sharma, Susheela, Branscombe, Lauren, Ertop, Tayfun Efe, Webster, Robert J. III, Oguz, Ipek, Kuntz, Alan, Krieger, Axel, Wu, Jie Ying
Surgical automation requires precise guidance and understanding of the scene. Current methods in the literature rely on bulky depth cameras to create maps of the anatomy, however this does not translate well to space-limited clinical applications. Monocular cameras are small and allow minimally invasive surgeries in tight spaces but additional processing is required to generate 3D scene understanding. We propose a 3D mapping pipeline that uses only RGB images to create segmented point clouds of the target anatomy. To ensure the most precise reconstruction, we compare different structure from motion algorithms' performance on mapping the central airway obstructions, and test the pipeline on a downstream task of tumor resection. In several metrics, including post-procedure tissue model evaluation, our pipeline performs comparably to RGB-D cameras and, in some cases, even surpasses their performance. These promising results demonstrate that automation guidance can be achieved in minimally invasive procedures with monocular cameras. This study is a step toward the complete autonomy of surgical robots.
Robotic Ultrasound-Guided Femoral Artery Reconstruction of Anatomically-Representative Phantoms
Al-Zogbi, Lidia, Raina, Deepak, Pandian, Vinciya, Fleiter, Thorsten, Krieger, Axel
Femoral artery access is essential for numerous clinical procedures, including diagnostic angiography, therapeutic catheterization, and emergency interventions. Despite its critical role, successful vascular access remains challenging due to anatomical variability, overlying adipose tissue, and the need for precise ultrasound (US) guidance. Errors in needle placement can lead to severe complications, restricting the procedure to highly skilled clinicians in controlled hospital settings. While robotic systems have shown promise in addressing these challenges through autonomous scanning and vessel reconstruction, clinical translation remains limited due to reliance on simplified phantom models that fail to capture human anatomical complexity. In this work, we present a method for autonomous robotic US scanning of bifurcated femoral arteries, and validate it on five vascular phantoms created from real patient computed tomography (CT) data. Additionally, we introduce a video-based deep learning US segmentation network tailored for vascular imaging, enabling improved 3D arterial reconstruction. The proposed network achieves a Dice score of 89.21% and an Intersection over Union of 80.54% on a newly developed vascular dataset. The quality of the reconstructed artery centerline is evaluated against ground truth CT data, demonstrating an average L2 deviation of 0.91+/-0.70 mm, with an average Hausdorff distance of 4.36+/-1.11mm. This study is the first to validate an autonomous robotic system for US scanning of the femoral artery on a diverse set of patient-specific phantoms, introducing a more advanced framework for evaluating robotic performance in vascular imaging and intervention.
Towards Fluorescence-Guided Autonomous Robotic Partial Nephrectomy on Novel Tissue-Mimicking Hydrogel Phantoms
Kilmer, Ethan, Chen, Joseph, Ge, Jiawei, Sarda, Preksha, Cha, Richard, Cleary, Kevin, Shepard, Lauren, Ghazi, Ahmed Ezzat, Scheikl, Paul Maria, Krieger, Axel
Autonomous robotic systems hold potential for improving renal tumor resection accuracy and patient outcomes. We present a fluorescence-guided robotic system capable of planning and executing incision paths around exophytic renal tumors with a clinically relevant resection margin. Leveraging point cloud observations, the system handles irregular tumor shapes and distinguishes healthy from tumorous tissue based on near-infrared imaging, akin to indocyanine green staining in partial nephrectomy. Tissue-mimicking phantoms are crucial for the development of autonomous robotic surgical systems for interventions where acquiring ex-vivo animal tissue is infeasible, such as cancer of the kidney and renal pelvis. To this end, we propose novel hydrogel-based kidney phantoms with exophytic tumors that mimic the physical and visual behavior of tissue, and are compatible with electrosurgical instruments, a common limitation of silicone-based phantoms. In contrast to previous hydrogel phantoms, we mix the material with near-infrared dye to enable fluorescence-guided tumor segmentation. Autonomous real-world robotic experiments validate our system and phantoms, achieving an average margin accuracy of 1.44 mm in a completion time of 69 sec.
Suture Thread Modeling Using Control Barrier Functions for Autonomous Surgery
Forghani, Kimia, Raval, Suraj, Mair, Lamar, Krieger, Axel, Diaz-Mercado, Yancy
Automating surgical systems enhances precision and safety while reducing human involvement in high-risk environments. A major challenge in automating surgical procedures like suturing is accurately modeling the suture thread, a highly flexible and compliant component. Existing models either lack the accuracy needed for safety critical procedures or are too computationally intensive for real time execution. In this work, we introduce a novel approach for modeling suture thread dynamics using control barrier functions (CBFs), achieving both realism and computational efficiency. Thread like behavior, collision avoidance, stiffness, and damping are all modeled within a unified CBF and control Lyapunov function (CLF) framework. Our approach eliminates the need to calculate complex forces or solve differential equations, significantly reducing computational overhead while maintaining a realistic model suitable for both automation and virtual reality surgical training systems. The framework also allows visual cues to be provided based on the thread's interaction with the environment, enhancing user experience when performing suture or ligation tasks. The proposed model is tested on the MagnetoSuture system, a minimally invasive robotic surgical platform that uses magnetic fields to manipulate suture needles, offering a less invasive solution for surgical procedures.
An Intrinsically Explainable Approach to Detecting Vertebral Compression Fractures in CT Scans via Neurosymbolic Modeling
Inigo, Blanca, Shen, Yiqing, Killeen, Benjamin D., Song, Michelle, Krieger, Axel, Bradley, Christopher, Unberath, Mathias
Vertebral compression fractures (VCFs) are a common and potentially serious consequence of osteoporosis. Yet, they often remain undiagnosed. Opportunistic screening, which involves automated analysis of medical imaging data acquired primarily for other purposes, is a cost-effective method to identify undiagnosed VCFs. In high-stakes scenarios like opportunistic medical diagnosis, model interpretability is a key factor for the adoption of AI recommendations. Rule-based methods are inherently explainable and closely align with clinical guidelines, but they are not immediately applicable to high-dimensional data such as CT scans. To address this gap, we introduce a neurosymbolic approach for VCF detection in CT volumes. The proposed model combines deep learning (DL) for vertebral segmentation with a shape-based algorithm (SBA) that analyzes vertebral height distributions in salient anatomical regions. This allows for the definition of a rule set over the height distributions to detect VCFs. Evaluation of VerSe19 dataset shows that our method achieves an accuracy of 96% and a sensitivity of 91% in VCF detection. In comparison, a black box model, DenseNet, achieved an accuracy of 95% and sensitivity of 91% in the same dataset. Our results demonstrate that our intrinsically explainable approach can match or surpass the performance of black box deep neural networks while providing additional insights into why a prediction was made. This transparency can enhance clinician's trust thus, supporting more informed decision-making in VCF diagnosis and treatment planning.
Tracking Tumors under Deformation from Partial Point Clouds using Occupancy Networks
Henrich, Pit, Liu, Jiawei, Ge, Jiawei, Schmidgall, Samuel, Shepard, Lauren, Ghazi, Ahmed Ezzat, Mathis-Ullrich, Franziska, Krieger, Axel
-- T o track tumors during surgery, information from preoperative CT scans is used to determine their position. However, as the surgeon operates, the tumor may be deformed which presents a major hurdle for accurately resecting the tumor, and can lead to surgical inaccuracy, increased operation time, and excessive margins. This issue is particularly pronounced in robot-assisted partial nephrectomy (RAPN), where the kidney undergoes significant deformations during operation. T oward addressing this, we introduce a occupancy network-based method for the localization of tumors within kidney phantoms undergoing deformations at interactive speeds. We validate our method by introducing a 3D hydrogel kidney phantom embedded with exophytic and endophytic renal tumors. It closely mimics real tissue mechanics to simulate kidney deformation during in vivo surgery, providing excellent contrast and clear delineation of tumor margins to enable automatic threshold-based segmentation. Our findings indicate that the proposed method can localize tumors in moderately deforming kidneys with a margin of 6mm to 10mm, while providing essential volumetric 3D information at over 60Hz. This capability directly enables downstream tasks such as robotic resection. Kidney cancer is one of the most common forms of cancer in the US, with over 65,000 new patients being diagnosed every year, leading to over 15,000 deaths [1]. The standard treatment for localized small renal masses has shifted from radical nephrectomy (complete kidney removal) toward the more minimally invasive approach of partial nephrectomy (removal of the tumor, retaining partial kidney function). One of the main challenges during tumor removal is ensuring the resection of adequate tumor margins. This work has been submitted to the IEEE for possible publication.
Autonomous Robotic System with Optical Coherence Tomography Guidance for Vascular Anastomosis
Haworth, Jesse, Biswas, Rishi, Opfermann, Justin, Kam, Michael, Wang, Yaning, Pantalone, Desire, Creighton, Francis X., Yang, Robin, Kang, Jin U., Krieger, Axel
Vascular anastomosis, the surgical connection of blood vessels, is essential in procedures such as organ transplants and reconstructive surgeries. The precision required limits accessibility due to the extensive training needed, with manual suturing leading to variable outcomes and revision rates up to 7.9%. Existing robotic systems, while promising, are either fully teleoperated or lack the capabilities necessary for autonomous vascular anastomosis. We present the Micro Smart Tissue Autonomous Robot (micro-STAR), an autonomous robotic system designed to perform vascular anastomosis on small-diameter vessels. The micro-STAR system integrates a novel suturing tool equipped with Optical Coherence Tomography (OCT) fiber-optic sensor and a microcamera, enabling real-time tissue detection and classification. Our system autonomously places sutures and manipulates tissue with minimal human intervention. In an ex vivo study, micro-STAR achieved outcomes competitive with experienced surgeons in terms of leak pressure, lumen reduction, and suture placement variation, completing 90% of sutures without human intervention. This represents the first instance of a robotic system autonomously performing vascular anastomosis on real tissue, offering significant potential for improving surgical precision and expanding access to high-quality care.
Surgical Robot Transformer (SRT): Imitation Learning for Surgical Tasks
Kim, Ji Woong, Zhao, Tony Z., Schmidgall, Samuel, Deguet, Anton, Kobilarov, Marin, Finn, Chelsea, Krieger, Axel
We explore whether surgical manipulation tasks can be learned on the da Vinci robot via imitation learning. However, the da Vinci system presents unique challenges which hinder straight-forward implementation of imitation learning. Notably, its forward kinematics is inconsistent due to imprecise joint measurements, and naively training a policy using such approximate kinematics data often leads to task failure. To overcome this limitation, we introduce a relative action formulation which enables successful policy training and deployment using its approximate kinematics data. A promising outcome of this approach is that the large repository of clinical data, which contains approximate kinematics, may be directly utilized for robot learning without further corrections. We demonstrate our findings through successful execution of three fundamental surgical tasks, including tissue manipulation, needle handling, and knot-tying.
General surgery vision transformer: A video pre-trained foundation model for general surgery
Schmidgall, Samuel, Kim, Ji Woong, Jopling, Jeffrey, Krieger, Axel
The absence of openly accessible data and specialized foundation models is a major barrier for computational research in surgery. Toward this, (i) we open-source the largest dataset of general surgery videos to-date, consisting of 680 hours of surgical videos, including data from robotic and laparoscopic techniques across 28 procedures; (ii) we propose a technique for video pre-training a general surgery vision transformer (GSViT) on surgical videos based on forward video prediction that can run in real-time for surgical applications, toward which we open-source the code and weights of GSViT; (iii) we also release code and weights for procedure-specific fine-tuned versions of GSViT across 10 procedures; (iv) we demonstrate the performance of GSViT on the Cholec80 phase annotation task, displaying improved performance over state-of-the-art single frame predictors.
Shape Manipulation of Bevel-Tip Needles for Prostate Biopsy Procedures: A Comparison of Two Resolved-Rate Controllers
Wang, Yanzhou, Al-Zogbi, Lidia, Liu, Jiawei, Shepard, Lauren, Ghazi, Ahmed, Tokuda, Junichi, Leonard, Simon, Krieger, Axel, Iordachita, Iulian
Prostate cancer diagnosis continues to encounter challenges, often due to imprecise needle placement in standard biopsies. Several control strategies have been developed to compensate for needle tip prediction inaccuracies, however none were compared against each other, and it is unclear whether any of them can be safely and universally applied in clinical settings. This paper compares the performance of two resolved-rate controllers, derived from a mechanics-based and a data-driven approach, for bevel-tip needle control using needle shape manipulation through a template. We demonstrate for a simulated 12-core biopsy procedure under model parameter uncertainty that the mechanics-based controller can better reach desired targets when only the final goal configuration is presented even with uncertainty on model parameters estimation, and that providing a feasible needle path is crucial in ensuring safe surgical outcomes when either controller is used for needle shape manipulation.