Goto

Collaborating Authors

 Kim, Minsoo


Training-Free Restoration of Pruned Neural Networks

arXiv.org Artificial Intelligence

Although network pruning has been highly popularized to compress deep neural networks, its resulting accuracy heavily depends on a fine-tuning process that is often computationally expensive and requires the original data. However, this may not be the case in real-world scenarios, and hence a few recent works attempt to restore pruned networks without any expensive retraining process. Their strong assumption is that every neuron being pruned can be replaced with another one quite similar to it, but unfortunately this does not hold in many neural networks, where the similarity between neurons is extremely low in some layers. In this article, we propose a more rigorous and robust method of restoring pruned networks in a fine-tuning free and data-free manner, called LBYL (Leave Before You Leave). LBYL significantly relaxes the aforementioned assumption in a way that each pruned neuron leaves its pieces of information to as many preserved neurons as possible and thereby multiple neurons together obtain a more robust approximation to the original output of the neuron who just left. Our method is based on a theoretical analysis on how to formulate the reconstruction error between the original network and its approximation, which nicely leads to a closed form solution for our derived loss function. Through the extensive experiments, LBYL is confirmed to be indeed more effective to approximate the original network and consequently able to achieve higher accuracy for restored networks, compared to the recent approaches exploiting the similarity between two neurons. The very first version of this work, which contains major technical and theoretical components, was submitted to NeurIPS 2021 and ICML 2022.


Agent-as-Judge for Factual Summarization of Long Narratives

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated near-human performance in summarization tasks based on traditional metrics such as ROUGE and BERTScore. However, these metrics do not adequately capture critical aspects of summarization quality, such as factual accuracy, particularly for long narratives (>100K tokens). Recent advances, such as LLM-as-a-Judge, address the limitations of metrics based on lexical similarity but still exhibit factual inconsistencies, especially in understanding character relationships and states. In this work, we introduce NarrativeFactScore, a novel "Agent-as-a-Judge" framework for evaluating and refining summaries. By leveraging a Character Knowledge Graph (CKG) extracted from input and generated summaries, NarrativeFactScore assesses the factual consistency and provides actionable guidance for refinement, such as identifying missing or erroneous facts. We demonstrate the effectiveness of NarrativeFactScore through a detailed workflow illustration and extensive validation on widely adopted benchmarks, achieving superior performance compared to competitive methods. Our results highlight the potential of agent-driven evaluation systems to improve the factual reliability of LLM-generated summaries.


RILQ: Rank-Insensitive LoRA-based Quantization Error Compensation for Boosting 2-bit Large Language Model Accuracy

arXiv.org Artificial Intelligence

Low-rank adaptation (LoRA) has become the dominant method for parameter-efficient LLM fine-tuning, with LoRA-based quantization error compensation (LQEC) emerging as a powerful tool for recovering accuracy in compressed LLMs. However, LQEC has underperformed in sub-4-bit scenarios, with no prior investigation into understanding this limitation. We propose RILQ (Rank-Insensitive LoRA-based Quantization Error Compensation) to understand fundamental limitation and boost 2-bit LLM accuracy. Based on rank analysis revealing model-wise activation discrepancy loss's rank-insensitive nature, RILQ employs this loss to adjust adapters cooperatively across layers, enabling robust error compensation with low-rank adapters. Evaluations on LLaMA-2 and LLaMA-3 demonstrate RILQ's consistent improvements in 2-bit quantized inference across various state-of-the-art quantizers and enhanced accuracy in task-specific fine-tuning. RILQ maintains computational efficiency comparable to existing LoRA methods, enabling adapter-merged weight-quantized LLM inference with significantly enhanced accuracy, making it a promising approach for boosting 2-bit LLM performance.


Adversarial Environment Design via Regret-Guided Diffusion Models

arXiv.org Artificial Intelligence

Training agents that are robust to environmental changes remains a significant challenge in deep reinforcement learning (RL). Unsupervised environment design (UED) has recently emerged to address this issue by generating a set of training environments tailored to the agent's capabilities. While prior works demonstrate that UED has the potential to learn a robust policy, their performance is constrained by the capabilities of the environment generation. To this end, we propose a novel UED algorithm, adversarial environment design via regret-guided diffusion models (ADD). The proposed method guides the diffusion-based environment generator with the regret of the agent to produce environments that the agent finds challenging but conducive to further improvement. By exploiting the representation power of diffusion models, ADD can directly generate adversarial environments while maintaining the diversity of training environments, enabling the agent to effectively learn a robust policy. Our experimental results demonstrate that the proposed method successfully generates an instructive curriculum of environments, outperforming UED baselines in zero-shot generalization across novel, out-of-distribution environments. Project page: https://rllab-snu.github.io/projects/ADD


Interventional Speech Noise Injection for ASR Generalizable Spoken Language Understanding

arXiv.org Artificial Intelligence

Recently, pre-trained language models (PLMs) have been increasingly adopted in spoken language understanding (SLU). However, automatic speech recognition (ASR) systems frequently produce inaccurate transcriptions, leading to noisy inputs for SLU models, which can significantly degrade their performance. To address this, our objective is to train SLU models to withstand ASR errors by exposing them to noises commonly observed in ASR systems, referred to as ASR-plausible noises. Speech noise injection (SNI) methods have pursued this objective by introducing ASR-plausible noises, but we argue that these methods are inherently biased towards specific ASR systems, or ASR-specific noises. In this work, we propose a novel and less biased augmentation method of introducing the noises that are plausible to any ASR system, by cutting off the non-causal effect of noises. Experimental results and analyses demonstrate the effectiveness of our proposed methods in enhancing the robustness and generalizability of SLU models against unseen ASR systems by introducing more diverse and plausible ASR noises in advance.


InfiniPot: Infinite Context Processing on Memory-Constrained LLMs

arXiv.org Artificial Intelligence

Handling long input contexts remains a significant challenge for Large Language Models (LLMs), particularly in resource-constrained environments such as mobile devices. Our work aims to address this limitation by introducing InfiniPot, a novel KV cache control framework designed to enable pre-trained LLMs to manage extensive sequences within fixed memory constraints efficiently, without requiring additional training. InfiniPot leverages Continual Context Distillation (CCD), an iterative process that compresses and retains essential information through novel importance metrics, effectively maintaining critical data even without access to future context. Our comprehensive evaluations indicate that InfiniPot significantly outperforms models trained for long contexts in various NLP tasks, establishing its efficacy and versatility. This work represents a substantial advancement toward making LLMs applicable to a broader range of real-world scenarios.


Disentangling Questions from Query Generation for Task-Adaptive Retrieval

arXiv.org Artificial Intelligence

This paper studies the problem of information retrieval, to adapt to unseen tasks. Existing work generates synthetic queries from domain-specific documents to jointly train the retriever. However, the conventional query generator assumes the query as a question, thus failing to accommodate general search intents. A more lenient approach incorporates task-adaptive elements, such as few-shot learning with an 137B LLM. In this paper, we challenge a trend equating query and question, and instead conceptualize query generation task as a "compilation" of high-level intent into task-adaptive query. Specifically, we propose EGG, a query generator that better adapts to wide search intents expressed in the BeIR benchmark. Our method outperforms baselines and existing models on four tasks with underexplored intents, while utilizing a query generator 47 times smaller than the previous state-of-the-art. Our findings reveal that instructing the LM with explicit search intent is a key aspect of modeling an effective query generator.


Improving Conversational Abilities of Quantized Large Language Models via Direct Preference Alignment

arXiv.org Artificial Intelligence

The rapid advancement of large language models (LLMs) has facilitated their transformation into conversational chatbots that can grasp contextual nuances and generate pertinent sentences, closely mirroring human values through advanced techniques such as instruction tuning and reinforcement learning from human feedback (RLHF). However, the computational efficiency required for LLMs, achieved through techniques like post-training quantization (PTQ), presents challenges such as token-flipping that can impair chatbot performance. In response, we propose a novel preference alignment approach, quantization-aware direct preference optimization (QDPO), that aligns quantized LLMs with their full-precision counterparts, improving conversational abilities. Evaluated on two instruction-tuned LLMs in various languages, QDPO demonstrated superior performance in improving conversational abilities compared to established PTQ and knowledge-distillation fine-tuning techniques, marking a significant step forward in the development of efficient and effective conversational LLMs.


Token-Scaled Logit Distillation for Ternary Weight Generative Language Models

arXiv.org Artificial Intelligence

Generative Language Models (GLMs) have shown impressive performance in tasks such as text generation, understanding, and reasoning. However, the large model size poses challenges for practical deployment. To solve this problem, Quantization-Aware Training (QAT) has become increasingly popular. However, current QAT methods for generative models have resulted in a noticeable loss of accuracy. To counteract this issue, we propose a novel knowledge distillation method specifically designed for GLMs. Our method, called token-scaled logit distillation, prevents overfitting and provides superior learning from the teacher model and ground truth. This research marks the first evaluation of ternary weight quantization-aware training of large-scale GLMs with less than 1.0 degradation in perplexity and achieves enhanced accuracy in tasks like common-sense QA and arithmetic reasoning as well as natural language understanding. Our code is available at https://github.com/aiha-lab/TSLD.


Enhancing Computation Efficiency in Large Language Models through Weight and Activation Quantization

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are proficient in natural language processing tasks, but their deployment is often restricted by extensive parameter sizes and computational demands. This paper focuses on post-training quantization (PTQ) in LLMs, specifically 4-bit weight and 8-bit activation (W4A8) quantization, to enhance computational efficiency -- a topic less explored compared to weight-only quantization. We present two innovative techniques: activation-quantization-aware scaling (AQAS) and sequence-length-aware calibration (SLAC) to enhance PTQ by considering the combined effects on weights and activations and aligning calibration sequence lengths to target tasks. Moreover, we introduce dINT, a hybrid data format combining integer and denormal representations, to address the underflow issue in W4A8 quantization, where small values are rounded to zero. Through rigorous evaluations of LLMs, including OPT and LLaMA, we demonstrate that our techniques significantly boost task accuracies to levels comparable with full-precision models. By developing arithmetic units compatible with dINT, we further confirm that our methods yield a 2$\times$ hardware efficiency improvement compared to 8-bit integer MAC unit.