Goto

Collaborating Authors

 Kim, Daebeom


KISS-Matcher: Fast and Robust Point Cloud Registration Revisited

arXiv.org Artificial Intelligence

While global point cloud registration systems have advanced significantly in all aspects, many studies have focused on specific components, such as feature extraction, graph-theoretic pruning, or pose solvers. In this paper, we take a holistic view on the registration problem and develop an open-source and versatile C++ library for point cloud registration, called \textit{KISS-Matcher}. KISS-Matcher combines a novel feature detector, \textit{Faster-PFH}, that improves over the classical fast point feature histogram (FPFH). Moreover, it adopts a $k$-core-based graph-theoretic pruning to reduce the time complexity of rejecting outlier correspondences. Finally, it combines these modules in a complete, user-friendly, and ready-to-use pipeline. As verified by extensive experiments, KISS-Matcher has superior scalability and broad applicability, achieving a substantial speed-up compared to state-of-the-art outlier-robust registration pipelines while preserving accuracy. Our code will be available at \href{https://github.com/MIT-SPARK/KISS-Matcher}{\texttt{https://github.com/MIT-SPARK/KISS-Matcher}}.


Quatro++: Robust Global Registration Exploiting Ground Segmentation for Loop Closing in LiDAR SLAM

arXiv.org Artificial Intelligence

Global registration is a fundamental task that estimates the relative pose between two viewpoints of 3D point clouds. However, there are two issues that degrade the performance of global registration in LiDAR SLAM: one is the sparsity issue and the other is degeneracy. The sparsity issue is caused by the sparse characteristics of the 3D point cloud measurements in a mechanically spinning LiDAR sensor. The degeneracy issue sometimes occurs because the outlier-rejection methods reject too many correspondences, leaving less than three inliers. These two issues have become more severe as the pose discrepancy between the two viewpoints of 3D point clouds becomes greater. To tackle these problems, we propose a robust global registration framework, called \textit{Quatro++}. Extending our previous work that solely focused on the global registration itself, we address the robust global registration in terms of the loop closing in LiDAR SLAM. To this end, ground segmentation is exploited to achieve robust global registration. Through the experiments, we demonstrate that our proposed method shows a higher success rate than the state-of-the-art global registration methods, overcoming the sparsity and degeneracy issues. In addition, we show that ground segmentation significantly helps to increase the success rate for the ground vehicles. Finally, we apply our proposed method to the loop closing module in LiDAR SLAM and confirm that the quality of the loop constraints is improved, showing more precise mapping results. Therefore, the experimental evidence corroborated the suitability of our method as an initial alignment in the loop closing. Our code is available at https://quatro-plusplus.github.io.


AdaLIO: Robust Adaptive LiDAR-Inertial Odometry in Degenerate Indoor Environments

arXiv.org Artificial Intelligence

In recent years, the demand for mapping construction sites or buildings using light detection and ranging~(LiDAR) sensors has been increased to model environments for efficient site management. However, it is observed that sometimes LiDAR-based approaches diverge in narrow and confined environments, such as spiral stairs and corridors, caused by fixed parameters regardless of the changes in the environments. That is, the parameters of LiDAR (-inertial) odometry are mostly set for open space; thus, if the same parameters suitable for the open space are applied in a corridor-like scene, it results in divergence of odometry methods, which is referred to as \textit{degeneracy}. To tackle this degeneracy problem, we propose a robust LiDAR inertial odometry called \textit{AdaLIO}, which employs an adaptive parameter setting strategy. To this end, we first check the degeneracy by checking whether the surroundings are corridor-like environments. If so, the parameters relevant to voxelization and normal vector estimation are adaptively changed to increase the number of correspondences. As verified in a public dataset, our proposed method showed promising performance in narrow and cramped environments, avoiding the degeneracy problem.