Goto

Collaborating Authors

 Kempe, David


Full Proportional Justified Representation

arXiv.org Artificial Intelligence

In multiwinner approval voting, forming a committee that proportionally represents voters' approval ballots is an essential task. The notion of justified representation (JR) demands that any large "cohesive" group of voters should be proportionally "represented". The "cohesiveness" is defined in different ways; two common ways are the following: (C1) demands that the group unanimously approves a set of candidates proportional to its size, while (C2) requires each member to approve at least a fixed fraction of such a set. Similarly, "representation" have been considered in different ways: (R1) the coalition's collective utility from the winning set exceeds that of any proportionally sized alternative, and (R2) for any proportionally sized alternative, at least one member of the coalition derives less utility from it than from the winning set. Three of the four possible combinations have been extensively studied: (C1)-(R1) defines Proportional Justified Representation (PJR), (C1)-(R2) defines Extended Justified Representation (EJR), (C2)-(R2) defines Full Justified Representation (FJR). All three have merits, but also drawbacks. PJR is the weakest notion, and perhaps not sufficiently demanding; EJR may not be compatible with perfect representation; and it is open whether a committee satisfying FJR can be found efficiently. We study the combination (C2)-(R1), which we call Full Proportional Justified Representation (FPJR). We investigate FPJR's properties and find that it shares PJR's advantages over EJR: several proportionality axioms (e.g. priceability, perfect representation) imply FPJR and PJR but not EJR. We also find that efficient rules like the greedy Monroe rule and the method of equal shares satisfy FPJR, matching a key advantage of EJR over FJR. However, the Proportional Approval Voting (PAV) rule may violate FPJR, so neither of EJR and FPJR implies the other.


Stability and Multigroup Fairness in Ranking with Uncertain Predictions

arXiv.org Artificial Intelligence

Rankings are ubiquitous across many applications, from search engines to hiring committees. In practice, many rankings are derived from the output of predictors. However, when predictors trained for classification tasks have intrinsic uncertainty, it is not obvious how this uncertainty should be represented in the derived rankings. Our work considers ranking functions: maps from individual predictions for a classification task to distributions over rankings. We focus on two aspects of ranking functions: stability to perturbations in predictions and fairness towards both individuals and subgroups. Not only is stability an important requirement for its own sake, but -- as we show -- it composes harmoniously with individual fairness in the sense of Dwork et al. (2012). While deterministic ranking functions cannot be stable aside from trivial scenarios, we show that the recently proposed uncertainty aware (UA) ranking functions of Singh et al. (2021) are stable. Our main result is that UA rankings also achieve multigroup fairness through successful composition with multiaccurate or multicalibrated predictors. Our work demonstrates that UA rankings naturally interpolate between group and individual level fairness guarantees, while simultaneously satisfying stability guarantees important whenever machine-learned predictions are used.


Proportional Representation in Metric Spaces and Low-Distortion Committee Selection

arXiv.org Artificial Intelligence

We introduce a novel definition for a small set R of k points being "representative" of a larger set in a metric space. Given a set V (e.g., documents or voters) to represent, and a set C of possible representatives, our criterion requires that for any subset S comprising a theta fraction of V, the average distance of S to their best theta*k points in R should not be more than a factor gamma compared to their average distance to the best theta*k points among all of C. This definition is a strengthening of proportional fairness and core fairness, but - different from those notions - requires that large cohesive clusters be represented proportionally to their size. Since there are instances for which - unless gamma is polynomially large - no solutions exist, we study this notion in a resource augmentation framework, implicitly stating the constraints for a set R of size k as though its size were only k/alpha, for alpha > 1. Furthermore, motivated by the application to elections, we mostly focus on the "ordinal" model, where the algorithm does not learn the actual distances; instead, it learns only for each point v in V and each candidate pairs c, c' which of c, c' is closer to v. Our main result is that the Expanding Approvals Rule (EAR) of Aziz and Lee is (alpha, gamma) representative with gamma <= 1 + 6.71 * (alpha)/(alpha-1). Our results lead to three notable byproducts. First, we show that the EAR achieves constant proportional fairness in the ordinal model, giving the first positive result on metric proportional fairness with ordinal information. Second, we show that for the core fairness objective, the EAR achieves the same asymptotic tradeoff between resource augmentation and approximation as the recent results of Li et al., which used full knowledge of the metric. Finally, our results imply a very simple single-winner voting rule with metric distortion at most 44.


Plurality Veto: A Simple Voting Rule Achieving Optimal Metric Distortion

arXiv.org Artificial Intelligence

The metric distortion framework posits that n voters and m candidates are jointly embedded in a metric space such that voters rank candidates that are closer to them higher. A voting rule's purpose is to pick a candidate with minimum total distance to the voters, given only the rankings, but not the actual distances. As a result, in the worst case, each deterministic rule picks a candidate whose total distance is at least three times larger than that of an optimal one, i.e., has distortion at least 3. A recent breakthrough result showed that achieving this bound of 3 is possible; however, the proof is non-constructive, and the voting rule itself is a complicated exhaustive search. Our main result is an extremely simple voting rule, called Plurality Veto, which achieves the same optimal distortion of 3. Each candidate starts with a score equal to his number of first-place votes. These scores are then gradually decreased via an n-round veto process in which a candidate drops out when his score reaches zero. One after the other, voters decrement the score of their bottom choice among the standing candidates, and the last standing candidate wins. We give a one-paragraph proof that this voting rule achieves distortion 3. This rule is also immensely practical, and it only makes two queries to each voter, so it has low communication overhead. We also generalize Plurality Veto into a class of randomized voting rules in the following way: Plurality veto is run only for k < n rounds; then, a candidate is chosen with probability proportional to his residual score. This general rule interpolates between Random Dictatorship (for k=0) and Plurality Veto (for k=n-1), and k controls the variance of the output. We show that for all k, this rule has distortion at most 3.


Fairness in Matching under Uncertainty

arXiv.org Artificial Intelligence

Systems based on algorithms and machine learning are increasingly used to guide or outright make decisions which strongly impact human lives; thus it is imperative to take fairness into account when designing such systems. Notions of fairness in computer science can be classified into those that try to capture fairness towards a group (Hardt et al., 2016; Hรฉbert-Johnson et al., 2018; Kearns et al., 2018; Kleinberg et al., 2017) vs. those that try to be fair to each individual Dwork et al. (2012); Kim et al. (2018, 2020). In our work, we focus on the latter notion. The most widely studied notion of individual fairness is due to the seminal work of Dwork et al. (2012): it assumes that a metric space on observable features of individuals captures similarity, and requires that outcomes of a resource allocation mechanism satisfy a certain Lipschitz continuity condition with respect to the given metric. Intuitively, this ensures that individuals who are similar according to the metric will be treated similarly by the mechanism. We consider a setting in which individuals have preferences over the outcomes of the resource allocation mechanism, focusing on the important setting of two-sided markets. Applications of this setting abound: matching students to schools, job fair participants to interviews, doctors to hospitals, patients to treatments, drivers to passengers in ride hailing, or advertisers to ad slots/users in online advertising (AbdulkadiroฤŸlu and Sรถnmez, 2003; Bronfman et al., 2015; Mehta et al., 2013; Roth, 1986; Roth et al., 2007), to name a


Altruism Design in Networked Public Goods Games

arXiv.org Artificial Intelligence

Many collective decision-making settings feature a strategic tension between agents acting out of individual self-interest and promoting a common good. These include wearing face masks during a pandemic, voting, and vaccination. Networked public goods games capture this tension, with networks encoding strategic interdependence among agents. Conventional models of public goods games posit solely individual self-interest as a motivation, even though altruistic motivations have long been known to play a significant role in agents' decisions. We introduce a novel extension of public goods games to account for altruistic motivations by adding a term in the utility function that incorporates the perceived benefits an agent obtains from the welfare of others, mediated by an altruism graph. Most importantly, we view altruism not as immutable, but rather as a lever for promoting the common good. Our central algorithmic question then revolves around the computational complexity of modifying the altruism network to achieve desired public goods game investment profiles. We first show that the problem can be solved using linear programming when a principal can fractionally modify the altruism network. While the problem becomes in general intractable if the principal's actions are all-or-nothing, we exhibit several tractable special cases.


A General Framework for Robust Interactive Learning

Neural Information Processing Systems

We propose a general framework for interactively learning models, such as (binary or non-binary) classifiers, orderings/rankings of items, or clusterings of data points. Our framework is based on a generalization of Angluin's equivalence query model and Littlestone's online learning model: in each iteration, the algorithm proposes a model, and the user either accepts it or reveals a specific mistake in the proposal. The feedback is correct only with probability p 1/2 (and adversarially incorrect with probability 1 - p), i.e., the algorithm must be able to learn in the presence of arbitrary noise. The algorithm's goal is to learn the ground truth model using few iterations. Our general framework is based on a graph representation of the models and user feedback.


On the Distortion of Voting With Multiple Representative Candidates

AAAI Conferences

We study positional voting rules when candidates and voters are embedded in a common metric space, and cardinal preferences are naturally given by distances in the metric space. In a positional voting rule, each candidate receives a score from each ballot based on the ballot's rank order; the candidate with the highest total score wins the election. The cost of a candidate is his sum of distances to all voters, and the distortion of an election is the ratio between the cost of the elected candidate and the cost of the optimum candidate. We consider the case when candidates are representative of the population, in the sense that they are drawn i.i.d. from the population of the voters, and analyze the expected distortion of positional voting rules. Our main result is a clean and tight characterization of positional voting rules that have constant expected distortion (independent of the number of candidates and the metric space). Our characterization result immediately implies constant expected distortion for Borda Count and elections in which each voter approves a constant fraction of all candidates. On the other hand, we obtain super-constant expected distortion for Plurality, Veto, and approving a constant number of candidates.These results contrast with previous results on voting with metric preferences: When the candidates are chosen adversarially, all of the preceding voting rules have distortion linear in the number of candidates or voters. Thus, the model of representative candidates allows us to distinguish voting rules which seem equally bad in the worst case.


A General Framework for Robust Interactive Learning

Neural Information Processing Systems

We propose a general framework for interactively learning models, such as (binary or non-binary) classifiers, orderings/rankings of items, or clusterings of data points. Our framework is based on a generalization of Angluin's equivalence query model and Littlestone's online learning model: in each iteration, the algorithm proposes a model, and the user either accepts it or reveals a specific mistake in the proposal. The feedback is correct only with probability p > 1/2 (and adversarially incorrect with probability 1 - p), i.e., the algorithm must be able to learn in the presence of arbitrary noise. The algorithm's goal is to learn the ground truth model using few iterations. Our general framework is based on a graph representation of the models and user feedback. To be able to learn efficiently, it is sufficient that there be a graph G whose nodes are the models, and (weighted) edges capture the user feedback, with the property that if s, s* are the proposed and target models, respectively, then any (correct) user feedback s' must lie on a shortest s-s* path in G. Under this one assumption, there is a natural algorithm, reminiscent of the Multiplicative Weights Update algorithm, which will efficiently learn s* even in the presence of noise in the user's feedback. From this general result, we rederive with barely any extra effort classic results on learning of classifiers and a recent result on interactive clustering; in addition, we easily obtain new interactive learning algorithms for ordering/ranking.


Learning Influence Functions from Incomplete Observations

Neural Information Processing Systems

We study the problem of learning influence functions under incomplete observations of node activations. Incomplete observations are a major concern as most (online and real-world) social networks are not fully observable. We establish both proper and improper PAC learnability of influence functions under randomly missing observations. Proper PAC learnability under the Discrete-Time Linear Threshold (DLT) and Discrete-Time Independent Cascade (DIC) models is established by reducing incomplete observations to complete observations in a modified graph. Our improper PAC learnability result applies for the DLT and DIC models as well as the Continuous-Time Independent Cascade (CIC) model. It is based on a parametrization in terms of reachability features, and also gives rise to an efficient and practical heuristic. Experiments on synthetic and real-world datasets demonstrate the ability of our method to compensate even for a fairly large fraction of missing observations.